edexcel

Mark Scheme (Results)
Summer 2012

GCSE Physics
5PH2H/01

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at www.edexcel.com.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

www.edexcel.com/contactus

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2012

Publications Code UG033060
All the material in this publication is copyright
© Pearson Education Ltd 2012

GCSE Physics 5PH2H/ 01 Mark Scheme - Summer 2012

Question Number	Answer	Acceptable answers	Mark
$\mathbf{1 (a) (i)}$	A 1260 W		(1)

Question Number	Answer	Acceptable answers	Mark
$\mathbf{1 (a) (i i)}$	substitution (1) $5040=240 \times 10 \times$ height transposition (1) height $=\underline{5040}$ 240×10 evaluation (1) $2.1(m)$	substitution and transposition in either order	

Question Number	Answer	Acceptable answers	Mark
$\mathbf{1 (b)}$	no movement (in direction of force) / (work done=) weight $\times 0=0$	stationary it is not changing height is in same position	ignore ref to terminal velocity, force and acceleration

Question Number	Answer	Acceptable answers	Mark		
$\mathbf{1 (c)}$	substitution (1) 240×6.4	1536 evaluation (1) 1500 give (2) marks for correct answer, no working	Unit (1) kg m/s\quad independent mark	\quad Ns	(3)
:---					

Question Number	Answer	Acceptable answers	Mark
2(a)(i)	positive $/+/$ plus /+ve /positively (charged)	accept poor spelling of positive	(1)

Question Number	Answer	Acceptable answers	Mark
2(a)(ii)	An explanation linking two from the following points $\bullet \quad$ repulsion / repels (1)	independent mark	
	$\bullet \quad$ (because) same charge (1)	(force) greater than gravity (1) positive charges repel each other (2) both positive so repel(2) positive ball attracted to negative lid (2)	(2)

Question Number	Answer	Acceptable answers	Mark
2(b)	An explanation linking the following points $\bullet \quad$ electrons move (1) \bullet from ground to lid (1)	negative charge moves to neutralise positives	(2)

Question Number	Answer	Acceptable answers	Mark
2(c)	An explanation linking the following points \bullet discharged /earthed so falls(1)	pulled down by gravity - charged again/at plate so rises/repels (1)	reached the plate and process repeats

Question Number	Answer	Acceptable answers	Mark
2(d)	B		(1)

Question Number	Answer	Acceptable answers	Mark
$\mathbf{3 (a)}$	Any one from the following points	Note: any applicable example where dissipation of thermal energy is a clear disadvantage	
	• (overheating) in a computer (1)		

Question Number	Answer	Acceptable answers	Mark
3(b)	substitution (1) $500=1 \times 230$ transposition (1) $500 / 230$ evaluation (1) 2.2 (A)	substitution and transposition in either order	
		2.17 (A) / 2 (A) give full marks for correct answer, no working	(3)

Question Number	Answer	Acceptable answers	Mark
3(c)	D joules per coulomb		(1)

Question Number	Answer	Acceptable answers	Mark
3(d)	An explanation linking two of the following points		
	• electron collision (1)	allow hit, bump into for collide	
	(in the/and the) lattice (1)	atoms/electrons/molecules/ions not between atoms	(2)

Question Number	Answer	Acceptable answers	Mark
$\mathbf{3 (e)}$	(Resistance =) 20000Ω (from graph) (1)	ecf if clear misread of R from graph substitution (1) 0.0006×20000 evaluation (1) $12(V)$	ignore powers of ten until evaluation

Question Number	Answer	Acceptable answers	Mark
4(a)	A description including the following points \bullet steam \{drives/turns \} turbine (1)		
	(which) \{drives/turns/powers \}		
generator (1)	transfers ke to electrical energy rotates a magnet in coils or coils in magnet accept dynamo for generator	(2)	

Question Number	Answer	Acceptable answers	Mark
4(b)	A description including the following points - neutron \{hits / splits / is absorbed by\} uranium (nucleus) (1) - producing more neutrons (1) - at least one neutron can $\{$ hit / split / be absorbed by\} other uranium (nuclei) (1)	full marks may be scored on a labelled diagram fired at other U (nuclei) or "process repeats"	(3)

Question Number	Answer	Acceptable answers	Mark
4(c)	A krypton-91		(1)

Question Number	Answer	Acceptable answers	Mark
4(d)	An explanation linking the following points		
• removes electrons (1)			
• from atoms (1)	collides with atoms ignore references to β decay process (nucleus losing an electron)	(2)	

Question Number	Answer	Acceptable answers	Mark
4(e)	An explanation linking the following points	ignore references to high temp and pressure	
(1) - nuclei are positively charged accept same charge accept protons for nuclei accept atoms	and will repel each other	(2)	

Question Number	Answer	Acceptable answers	Mark
$\mathbf{5 (a)}$	A		(1)

Question Number	Answer	Acceptable answers	Mark
5(b)	distance travelled = area under graph (1) substitution (1) $1 / 2 \times 20 \times 2$ evaluation (1) $20(\mathrm{~m})$	distance = average speed \times time $=10 \times 2$	

Question Number	Answer	Acceptable answers	Mark
5(c)	An explanation linking the following points - velocity is a vector (1)	velocity has magnitude and direction velocity has direction speed is a scalar speed has \{no direction\}/\{magnitude only\} allow for 2 marks velocity is speed in a straight line velocity = displacement	(whereas) speed is not (1)

Question Number		Indicative Content	Mark
QWC	*5(d)	An explanation linking some of the following Forces acting - weight down - air resistance up (opposing motion) Forces during fall - weight constant - air resistance increases - with speed - resultant force $=\mathrm{W}-\mathrm{R}$ Effect on shape of graph - at start, resultant force is large so acceleration large / gradient steep - mid resultant force decreasing so acceleration decreasing / gradient decreasing - terminal velocity, resultant force is zero so acceleration zero / gradient zero	(6)
Level	0	No rewardable content	
1	1-2	- a limited explanation linking a few facts from the indicativ content. E.g. at terminal velocity, forces are equal so const speed. - the answer communicates ideas using simple language and limited scientific terminology - spelling, punctuation and grammar are used with limited a	es racy
2	3-4	a simple explanation linking some of the indicative content to shape of the graph e.g At the start weight > air resistance so acceleration and at the end weight $=$ air resistance so no acceleration. - the answer communicates ideas showing some evidence of and organisation and uses scientific terminology appropriat - spelling, punctuation and grammar are used with some accu	the arity acy
3	5-6	- a detailed explanation linking most of the indicative content complete shape of the graph e.g. At the start weight > air resistance so acceleration. Then air resistance increases (with speed) so acceleration decreases. At the end weight = air resistance so no acceleration. - the answer communicates ideas clearly and coherently uses of scientific terminology accurately - spelling, punctuation and grammar are used with few errors	the range

Question Number	Answer	Acceptable answers	Mark		
$\mathbf{6 (a)}$	An explanation linking the following points				
• small percentage / amount of					
material (1)				\quad	activity level low / less than
:---					
background (1)	\quad	radiation/radioactivity for			
:---					
activity					
within safe limits	\quad (2)	(a)			
:---					

Question Number	Answer	Acceptable answers	Mark
6(b)(i)	B 50 days		(1)

Question Number	Answer	Acceptable answers	Mark
6(b)(ii)	12.5	$10-15$	(1)

Question Number	Answer	Acceptable answers	Mark
6(c)	An explanation linking the following points - time for halving (1) - clear as to what is halving (1)	Allow for atoms: isotope / element / nuclei / (radioactive) substance /particles/(radioactive) material/radiation/ count rate/Bq/activity/radioactivity time for half of the atoms to decay (2) time for the activity/count rate to drop to half (of original value) (2) time for $1 / 2$ of it to decay (1)	(2)

Question Number		Indicative Content	Mark
QWC	*6(d)	A discussion including some of the following points Model components related to actual machine - lamp - radioactive source (β - source) - sensor (LDR) - Geiger counter arrangement - card - liquid in bottle Interaction of components related to working of machine - rising of card - more liquid in bottle - rising of card - less light - higher resistance - smaller current / reading - circuit switches on if too much light - greater absorption gives less radiation to detect - machine discards bottle if too little liquid, model does not	
Level	0	No rewardable content	
1	1-2	- a limited discussion comparing some of the indicative content. E.g. two of the lamp, sensor and card are related to the source (Geiger) counter and liquid respectively. - the answer communicates ideas using simple language and uses limited scientific terminology - spelling, punctuation and grammar are used with limited accuracy	
2	3-4	- a simple discussion comparing parts of the process. E.g. Two of the lamp, sensor and card are related to the source Geiger counter and liquid respectively. The rising of the card gives more liquid in the bottle. - the answer communicates ideas showing some evidence of clarity and organisation and uses scientific terminology appropriately - spelling, punctuation and grammar are used with some accuracy	
3	5-6	- a detailed discussion of the whole process. E.g. the lamp, sensor and card are related to the source Geiger counter and liquid respectively. The rising of the card gives more liquid in bottle. Too much light/ radiation getting through starts the alarm. - the answer communicates ideas clearly and coherently uses a range of scientific terminology accurately - spelling, punctuation and grammar are used with few errors	

Further copies of this publication are available from
Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623467467
Fax 01623450481
Email publication.orders@edexcel.com
Order Code UG033060 Summer 2012

For more information on Edexcel qualifications, please visit our website
 www.edexcel.com

Rewarding Learning

