edexcel "

Mark Scheme (Results)
November 2012

GCSE Physics
5PH2F/01

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk for our BTEC qualifications.
Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

If you have any subject specific questions about this specification that require the help of a subject specialist, you can speak directly to the subject team at Pearson.
Their contact details can be found on this link: www.edexcel.com/teachingservices.

You can also use our online Ask the Expert service at www.edexcel.com/ask. You will need an Edexcel username and password to access this service.

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

November 2012
Publications Code UG034067
All the material in this publication is copyright
© Pearson Education Ltd 2012

GCSE Physics 5PH2F/ 01 Mark Scheme - November 2012

Question Number	Answer	Acceptable answers	Mark
$\mathbf{1 (a) (\mathbf { i })}$	D 23 m		(1)

Question Number	Answer	Acceptable answers	Mark
$\mathbf{1 (a) (i i)}$	A the driver is tired		(1)

Question Number	Answer	Acceptable answers	Mark
$\mathbf{1 (b)}$	substitution (1) 800×3 evaluation (1) $2400(\mathrm{~kg} \mathrm{~m} / \mathrm{s})$	Give full marks for correct numerical answer, even if no working bald 2.4×10^{n} gains 1 mark (BOD for correct substitution) eg bald $240=1$ mark	(2)
		In all calculations if the candidate gives two different methods and writes the wrong answer in the answer space award no marks If the candidate writes correct answer they will gain full marks.	

Question Number	Answer	Acceptable answers	Mark
$\mathbf{1 (c) (i)}$	substitution (1) 600×15	bald 9.0×10^{n} gains 1 mark eg bald $900=1$ mark (BOD for correct substitution) $9000(J)$	(2)

Question Number	Answer	Acceptable answers	Mark
$\mathbf{1 (c) (i i)}$	A the energy transferred		(1)

Question Number	Answer	Acceptable answers	Mark
$\mathbf{2 (a) (i)}$	A alpha particles		(1)

Question Number	Answer	Acceptable answers	Mark
$\mathbf{2 (a) (i i)}$	A suggestion to include	Absorbs (ionising) radiation (from the sources)	Stops/reduces radiation/ radioactivity (reaching people); Stops/reduces (alpha) particles or any named ionising radiation (reaching people); Protects people/keeps it safe; Ignore - "so the source cannot pass through"

Question Number	Answer	Acceptable answers	Mark
$\mathbf{2 (a) \text { (iii) }}$	One from Buildings/building materials, food, plants, water, outer space, rocks, air, Sun	Cosmic rays/waves; radon (gas); radioactive waste; nuclear accidents/Chernobyl/nuclear explosions; nuclear power stations;	(1)
do NOT accept everywhere			
ignore alpha, beta, gamma,			
microwaves and X-rays, carbon			
dioxide, nitrogen, (mobile)			
phones			

\hline\end{array}\right.\)

Question Number	Answer	Acceptable answers	Mark
$\mathbf{2 ~ (a) ~ (i v) ~}$	Any two relevant precautions	Distance (between students and source); no touching; no eating; short exposure time; (use of) film badge/ detector; Protective clothing; Use of lead (lined) box / keep box shut/ sources in box (when not in use); (stand behind/use of) a screen; Do not point (source) at students; Show video/dvd of demo; Ignore goggles, gloves, lab coats,;	

Question Number	Answer	Acceptable answers	Mark
2 (b) (i)	Calculation of number of halflives $\begin{equation*} 8 \div 4=2 \text { (half lives) } \tag{1} \end{equation*}$ evaluation of mass $6 \div 2=3 \div 2=1.5(\mathrm{mg})$ (1)	Award 1 mark for clearly calculating mass halves after 4 days eg $6 / 2=3(\mathrm{mg})$ $6 / 4=1.5 \text { scores } 2 \text { marks }$ Allow rounded 2 mg if clear they calculated 1.5 mg give full marks for correct numerical answer, 1.5 (mg) even if no working	(2)

Question Number	Answer	Acceptable answers	Mark
2 (b) (ii)	An explanation linking any two of the following points - people inhale radon (gas) - radon is quite likely to/may decay in the lungs (before being exhaled) (1) - causes ionisation of cells (in lungs) (1) - increases risk of (lung) cancer (1)	Breathe in radon (gas)/ breathe it in/ radon (gas) gets into the body; Gives out radiation in the body / alpha (particles) very ionising; causes damage to (DNA of) cells (in lung)/cell mutations/kills cells; (Damages the body is insufficient) (causes lung) cancer	(2)

Question Number	Answer	Acceptable answers	Mark
$\mathbf{3 (a) (i)}$	D decrease the resistance of the variable resistor		(1)

Question Number	Answer	Acceptable answers	Mark
$\mathbf{3 (b) (i)}$	correct symbol for ammeter or voltmeter (seen anywhere) (1) one meter connected in parallel with lamp/variable resistor/supply and one meter in series with lamp(1)	Ignore gaps, lines through symbols and wire connected to side of variable resistor	Symbols do not have to be correct for this mark voltmeter connected across both components is same as voltmeter connected across supply
Symbols do not have to be both meters correctly connected (ammeter in series and voltmeter in parallel with lamp) (1)	(3rrect for this mark any shape, labelled ammeter, in series with lamp AND any shape, labelled voltmeter, in parallel with lamp gains marking points 2 and 3	(3)	

Question Number	Answer	Acceptable answers	Mark
3(b)(ii)	$\begin{aligned} & \text { substitution (1) } \\ & 0.5 \times 8 \\ & \text { evaluation } \\ & 4(\mathrm{~V}) \end{aligned}$	bald 4.0×10^{n} gains 1 mark eg bald 40 or $0.4=1$ mark (BOD for correct substitution) give full marks for correct numerical answer, $4(\mathrm{~V})$ even if no working	(2)

Question Number	Answer	Acceptable answers	Mark
$\mathbf{3 (c)}$	An explanation linking the following points Heat/thermal energy is produced (1)	In the lamp/bulb / variable resistor / connecting wires (1) inefficient'	Accept 'it' as meaning the lamp Eg 'it also produces heat' gains both marks Idea that (some) energy is wasted/lost in the lamp/variable resistor/wires gains maximum of 1 mark

Question Number	Answer	Acceptable answers	Mark
3(d)	$\begin{aligned} & \text { substitution } \\ & 0.4 \times 5 \\ & \text { evaluation } \\ & 2(\mathrm{~W}) \end{aligned}$	bald 2.0×10^{n} gains 1 mark eg bald 20 or $0.2=1$ mark (BOD for correct substitution) give full marks for correct numerical answer, 2 (W) no working	(2)

Question Number	Answer	Acceptable answers	Mark
4 (a)(i)	16 (s)	(1)	Sixteen/ sixteen seconds/ 16 s/ 16 seconds

Question Number	Answer	Acceptable answers	Mark
$\mathbf{4 ~ (a) ~ (i i) ~}$	Downward arrow starting at centre of the block	Mark by eye ie ruler not required. Accept freehand lines and gaps between dot and line less than half the distance between dot and bottom of block by eye. Accept lines that are not quite vertical	(1)

Question Number	Answer	Acceptable answers	Mark
$\mathbf{4}$ (a) (iii)	D zero		(1)

Question Number	Answer	Acceptable answers	Mark
4 (a) (iv)	Substitution $3 / 2$ (1) Evaluation 1.5 Unit $\mathrm{m} / \mathrm{s}^{2}$ (1)	ms^{2} or $\mathrm{m} / \mathrm{s} / \mathrm{s}$ bald $1.5 \times 10^{n} \mathrm{~m} / \mathrm{s}^{2}$ gains 2 marks eg bald $150=1$ mark (BOD for correct substitution) $150 \mathrm{~m} / \mathrm{s}^{2}$ gains 2 marks give full marks for correct numerical answer, $1.5 \mathrm{~m} / \mathrm{s}^{2}$ even if no working	(3)

Question Number	Answer	Acceptable answers	Mark
$\begin{aligned} & 4(a) \\ & \text { (v) } \end{aligned}$	An explanation to include two of the following points - (At first/in first 2 seconds Block is) accelerating - Which requires a (resultant) force - In addition to the force needed to balance the weight of the block (1) - (In next 4 seconds) forces are balanced (1) - (Because) velocity is constant (1)	(block is) speeding up/increasing velocity there is an unbalanced force/ forces are not balanced (Because) speed is steady	(2)

Question Number	Answer	Acceptable answers	Mark
4 (b)	An explanation to include	Ignore air resistance	
	Anformation taken from the graph		
(1)	Overall) time is less OR velocity/speed is greater OR acceleration is greater OR bigger/faster change in velocity/speed	(2)	
So (same amount of) work is done more quickly/energy is transferred faster			

Question Number	Answer	Acceptable answers	Mark
$\mathbf{5 (a) (i)}$	Neutron(s)	Accept phonetic spellings eg newtron(s) or neutron(s) Reject newtons	(1)

Question Number	Answer	Acceptable answers	Mark
$\mathbf{5 (a) (i i)}$	$\mathrm{D} \quad$9 Be		(1)

Question Number	Answer	Acceptable answers	Mark
5(a)(iii)	A explanation linking the following points - Charge/electron transfer (1) - Correct transfer detail (1)	Gains/loses charge Gains an electron = 1mark Loses (an) electron(s) gains both marks Award 1 mark for gaining a proton as idea of gains charge	(2)

Question Number	Answer	Acceptable answers	Mark
5(b)	A description including any two of the following points - Two (light) / (small) nuclei (1) - Fuse together (1) - To produce a large(r)/heavier nucleus/atom / particle (1)	I gnore references to releasing energy as this is in the Q. two hydrogen (and or helium) nuclei / two protons join /combine/merge/come / forced together helium/lithium (nucleus/atom/particle)	(2)

Question Number		Indicative Content	Mark
QWC	*5(c)	A description including some of the following points - Nucleus absorbs a neutron - Nucleus becomes unstable - nucleus fissions/ splits - (2 or) more neutrons released - daughter products - chain reaction - use of moderator - to control kinetic energy of neutrons/slow down neutrons - increases chance of further/more (fission) reactions - use of control rods - control rods absorb neutrons - reducing number of neutrons available for fission/to control (fission) reaction - containment of radioactive materials - little/no radiation enters environment Ignore references to the release of energy as this is given in Q Marks can be scored by a suitably labelled diagram	(6)
Leve	0	No rewardable content	
1	1-2	- a limited description that contains one or two points and pos has a number of inaccuracies e.g. Uranium atom splitscontrol rods are used (to modera reaction) OR Uranium atom absorbs a neutronthere is a chain reaction OR (In the nuclear reactor)chain reaction starts - the answer communicates ideas using simple language and limited scientific terminology spelling, punctuation and grammar are used with limited ac	sibly te the uses uracy
2	3-4	- a simple description that links two points e.g. A uranium nucleus absorbs a neutron and splits. OR A uranium atom splits and releases more neutrons. - the answer communicates ideas showing some evidence and organisation and uses scientific terminology appropria - spelling, punctuation and grammar are used with some accur	clarity ly racy

$\mathbf{3}$	5-6	- a detailed description that gives a linked statement about fission plus some detail about control or containment OR A detailed description that gives two pairs of linked statements about fission e.g Uranium nucleus absorbs a neutron and splits/fissions AND 2 or more neutrons are released and are slowed by a moderator/ produce a chain reaction. OR Control rods absorb (some) neutrons to control the reaction.
- the answer communicates ideas clearly and coherently uses a range of scientific terminology accurately spelling, punctuation and grammar are used with few errors		

Question Number	Answer	Acceptable answers	Mark
$\mathbf{6 (a) (i)}$	A gained electrons		(1)

Questio n Number	Answer	Acceptable answers	Mark
$\mathbf{6}$ (a) (ii)	An explanation linking any two of the following Friction (1)	Reject positive electrons and movement of positive charge	Rubbing (hair with comb)
(Causes) hair to lose electrons(to			
the comb)			
(1)			
Hair has an (overall) positive charge (1)	Electrons transfer/move (Ignore atoms)	Eg electrons transfer to hair as comb rubs hair gains 2 marks	(2)

Question Number	Answer	Acceptable answers	Mark
$\mathbf{6}$ (a) (iii)	An indication that negative charges have been repelled (by the comb) (1)	An arrow/label clearly indicating to the bottom of the foil Correct separation of positive and negative charges minus signs shown less than half-way up the foil	(1)

Question Number	Answer	Acceptable answers	Mark
$\mathbf{6 (b)}$	An explanation linking the following points	No credit for both have the same charge so repel Accept electrons for charge does not become charged /gain charge/static electricity (1)	Charge is earthed/flows (in)to ground/off comb/into Vicky
it/charge moves through the metal/comb(1)	(2) Metal is a conductor credit they are both neutral/have no charge with 1 mark		

Question Number		Indicative Content	Mark
QWC	*6(c)	A description / comparison/ explanation / etc including some of the following points - paint particles have the same charge - like charges repel - Particles repel each other - So spread out (more)/form a (fine) mist - Even layers - Improved finish - Opposite charge(is induced) on object - Paint particles are attracted to metal object - To parts not in direct line of spray/back of object - Need not move the sprayer to reach back - Takes less time - Uses less paint/ less paint wasted. - Uncharged paint forms large droplets/runs (off object) Allow reverse arguments for uncharged paint Accept an explanation that includes the idea that there is attraction between charged and uncharged/neutral/earthed objects	(6)
Level	0	No rewardable content	
1	1-2	- a limited description that contains one or two points and possibly has a number of inaccuracies e.g. even layer.... paint is attracted to object OR uses less paint - the answer communicates ideas using simple language uses limited scientific terminology - spelling, punctuation and grammar are used with limited accuracy	
2	3-4	- a simple description that links two points - e.g. particles repel each other which makes them spread OR They are attracted to the metal object because it has th opposite charge. - the answer communicates ideas showing some evidence clarity and organisation and uses scientific terminology appropriately - spelling, punctuation and grammar are used with some accuracy	

$\mathbf{3}$	5-6	-a detailed description that links two points about repulsion and links two points about attraction of charges OR statement that links two points about charged paint together with a a somment about uncharged paint. e.g. particles have the same charge and repel each other (which makes them spread out to form even layers) AND they are attracted to the metal object OR particles have the same charge and repel each other but uncharged paint would form big drops.
- the answer communicates ideas clearly and coherently uses a range of scientific terminology accurately spelling, punctuation and grammar are used with few errors		

Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623467467
Fax 01623450481
Email publication.orders@edexcel.com
Order Code UG034067 November 2012

Llywodraeth Cynulliad Cymru Welsh Assembly Government
For more information on Edexcel qualifications, please visit our website www.edexcel.com

Rewarding Learning

