

Mark Scheme (Results)

Summer 2017

Pearson Edexcel International GCSE in Physics (4PH0) Paper 2PR

PMT

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: <u>www.pearson.com/uk</u>

Summer 2017 Publications Code 4PH0_2PR_1706_MS All the material in this publication is copyright © Pearson Education Ltd 2017

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Question number	Answer				Notes	Marks	
1	Name of		Type of pov	ver station			4
	power station	fossil fuel	hydroelectric	nuclear	wind turbine		
	Dinorwig		\checkmark				
	Drax	\checkmark					
	Fullabrook				\checkmark		
	Torness			\checkmark			
	1 mark 1	for each	correct ro	ow ;;;;			
						More than 1 tick (✓) in a row negates that row	

Total for question = 4 marks

Question number		Answer	Notes	Marks
2 (a)		gravitational (potential energy);	allow GPE ignore gravity ignore thermal/heat potential energy	1
(b) ((i)	friction; electrons; positive;	must be in this order	3
(ii)	all the hairs have the same (negative) charge; (same charges) repel;	condone positive charge allow 'like' for 'same'	2
(c)		any 3 of: MP1. metal /post conducts/eq; MP2. charge is earthed /charge flows to	allow electrons for charge allow metal provides low resistance path	3
		ground ; MP3. discharging hair/ eq;	allow (all) charge leaves hair /girl	
		MP4. hair falls down due to its weight;	hair/ girl becomes neutral condone 'pulled down by (effect of) gravity'	

Total for question = 9 marks

MP1. same number of <u>protons</u> OR	ignore references to	
same <u>atomic number;</u> MP2. different number of <u>neutrons</u> OR different <u>mass number;</u>	electrons / elements / nuclei / atoms	2
 Any 2 of MP1. Remove source / protactinium; MP2. Measure background radiation and repeat; MP3. Subtract background count/radiation from readings; 	allow 'measure over a long period of time' determine the difference in counts	2
suitable scale chosen (>50% of grid used); axes labelled with quantities and unit; plotting correct to nearest half square (minus one for each plotting error);; line (curve) of best fit acceptable;	Allow counts/s, s ⁻¹ , Bqi.e. two plotting errors= no marks for plottingi.e. smooth curve within1 small square of eachpointtime in seconds05220434035602980241001912016140	5
evidence of correct graph use; evidence of taking more than one measurement;	e.g. construction lines at count rate of 26 e.g. additional construction lines at count rate of 13 or other pair of count rates such as 40:20	3
	OR different <u>mass number</u> ; Any 2 of MP1. Remove source / protactinium; MP2. Measure background radiation and repeat; MP3. Subtract background count/radiation from readings; suitable scale chosen (>50% of grid used); axes labelled with quantities and unit; plotting correct to nearest half square (minus one for each plotting error);; line (curve) of best fit acceptable; $u_{0}^{4,440} = \int_{0}^{4,440} \int_{$	OR different mass number:Any 2 ofMP1. Remove source / protactinium; MP2. Measure background radiation and repeat;MP3. Subtract background count/radiation from readings;suitable scale chosen (>50% of grid used); axes labelled with quantities and unit; plotting correct to nearest half square (minus one for each plotting error);; line (curve) of best fit acceptable; $uitable scale chosen (>50% of grid used);axes labelled with quantities and unit;plotting correct to nearest half square(minus one for each plotting error);;line (curve) of best fit acceptable;uitable scale chosen (>50% of grid used);axes labelled with quantities and unit;plotting correct to nearest half square(minus one for each plotting error);;line (curve) of best fit acceptable;uitable scale chosen (>50% of grid used);axes labelled with quantities and unit;plotting correct graph use;evidence of correct graph use;evidence of taking more than onemeasurement;e.g. construction lines atcount rate of 26e.g. additionalconstruction lines atcount rates such as 40:20$

Total for question = 12 marks

Question number	Answer	Notes	Marks
4 (a) (i)	boiling;	allow evaporation	1
(ii)	MP1. idea that particles move apart;	ignore references to vibration allow molecules for particles allow spread out / take up more space may be shown on labelled	3
	MP2. idea that particles gain (kinetic) energy;MP3. idea that particles move (more) freely;	diagram allow idea of moving fast er ignore 'move more' allow 'bonds break' / 'break away' / 'escape	
		surface' / 'overcome attraction' ignore unqualified 'move more' / 'move randomly'	
(b) (i)	substitution;	no mark for formula as seen on QP page 2 rearrangement and substitution in either order	3
	evaluation;	$p_{1} x T_{2} = p_{2} x T_{1}$ $p_{1} = \frac{p_{2} x T_{1}}{T_{2}}$	
	e.g. $\frac{100}{350} = \frac{p_2}{450}$ $(p_2 =) \frac{100 \times 450}{350}$ $(p_2=) 130 \text{ (kPa)}$	allow 129, 128.6 etc correct answers without working gain 3 marks truncated answers e.g. 128 gains 2 marks only 230 gains 1 mark	
(ii)	straight line with same positive gradient throughout; line passes through the origin (if extended);	mark independently judge by eye	2

Question number	Answer	Notes	Marks
5 (a)	A (20 Hz – 20,000 Hz);		1
	The only correct answer is A		
	B is not correct because 25,00 Hz is too high for humans to hear		
	C is not correct because humans can hear below 200Hz		
	D is not correct because 25,00 Hz is too high for humans to hear and humans can hear below 200Hz		
(b) (i)	calculation of time period;		3
	use of f=1/T; evaluation;	allow ecf for incorrect T	
	e.g. (time period / T) = 0.010 (s) (f =) 1/0.010	allow 0.01 seen anywhere	
	(f =) 100 (Hz)	200 (Hz), 33(.3) (Hz) for 2 marks	
(ii)	line drawn has similar amplitude to existing line; line drawn has a smaller frequency;		2

Total for question = 6 marks

Question number	Answer	Notes	Marks	
6 (a) (i)	any sensible suggestion; e.g. newtonmeter / balance / scale(s)	accept (electronic) scale condone newtonmetre ignore weighing machine	1	
(ii)	weight = mass x gravitational field strength;	allow in standard symbols or in words e.g. W = m x g allow a 'mixture' e.g. weight = mass x g reject 'gravity' for g	1	
(iii)	substitution OR rearrangement; evaluation;		2	
	e.g. 50 = m x 10 (m =) 5 (kg)	allow use of g = 9.81 N/kg 5.1(kg) from g= 9.81 accept correct answer with no working for both marks		
(b)	MP1. use of density = mass/volume;		3	
	MP2. measure volume (of cannonball);	allow 'find out' for measure		
	MP3. further volume measurement detail; e.g. volume of cannonball= volume of water displaced OR measure diameter AND calculate volume of sphere	allow radius for diameter v=4/3 π r ³ for volume		
(c)	any 3 of:	ignore references to Newton's laws	3	
	MP1.Momentum = mass x velocity;	p = m x v		
	MP2. momentum before (firing) is zero;			
	MP3. momentum is conserved;	momentum before = momentum after		
	MP4. idea that after firing cannon must have equal and opposite <u>momentum</u> to cannonball;	$0 = m_1 x v_1 - m_2 x v_2$ (v taken in the direction of the arrows on the diagram)		
<u> </u>		Total for question –		

Question number	Answer	Notes	Marks
7 (a)	digital: only set values allowed; analogue: any value allowed / continuously variable;	allow in diagrams or words ignore references to quality, regeneration, range, information density allow idea of binary, on-off, OR 1-0 for digital signal	2
(b)	MP1. use of correct distance OR doubling time(at end of calculation); MP2. conversion from mm to m; MP3. substitution OR rearrangement; MP4. evaluation; e.g. (distance =) 4.2 (mm) (distance =) 0.0042 (m) 2.8 x $10^8 = \frac{0.0042}{1000000000000000000000000000000000000$	seen anywhere 4.2×10^{-3} (m) time = $\frac{4.2 \times 10^{-3}}{2.8 \times 10^{8}}$ 1.5×10^{-11} (s) gets 4 marks 7.5×10^{-12} gets 3 allow POT error as unit conversion error for -1 e.g. 1.5×10^{-9} (s) gets 3 marks 7.5×10^{-11} gets 2	4

(c)	any 4	of:	ignore references to RH rule or LH	4
	MP1.	current (in coil /wire) is alternating / changing direction / varying;	rule allow mention of a.c.	
	MP2.	the coil / wire has a (changing) magnetic field;	ignore 'coil/ wire is electromagnet'	
	MP3.	magnetic field of (permanent) magnet and of coil interact ;	condone 'fields overlapping' ignore 'cutting field'	
	MP4.	producing a force (which changes direction) on the coil;	allow 'coil is attracted/repelled by permanent magnet'	
	MP5.	causing loudspeaker cone to vibrate;	allow paper tube for loudspeaker cone	
	MP6.	vibrations transferred to air;		

Total for question = 10 marks

PMT