Questions on Work & Energy

1. Describe one example where elastic potential energy is stored.

.....

[Total 1 mark]

2. The figure below shows two forces, each of magnitude 1200 N, acting on the edge of a disc of radius 0.20 m.

torque =N m

- (b) This torque is needed to overcome friction and keep the disc rotating at a constant rate.
 - (i) Show that the work done by the **two** forces when the disc rotates one complete revolution is about 3000 J.
 - (ii) Calculate the power required to keep the disc rotating at 40 revolutions per second.

power = W

[2] [Total 7 marks]

[2]

3. Fig. 1 shows part of the force-extension graph for a spring. The spring obeys Hooke's law for forces up to 5.0 N.

Fig. 1

(a) Calculate the extension produced by a force of 5.0 N.

extension = mm

(b) Fig. 2 shows a second identical spring that has been put in parallel with the first spring. A force of 5.0 N is applied to this combination of springs.

For the arrangement shown in Fig. 2, calculate

(i) the extension of each spring

extension = mm

[2]

(ii) the total strain energy stored in the springs.

strain energy = J

[2]

(c) The Young modulus of the wire used in the springs is 2.0×10^{11} Pa. Each spring is made from a straight wire of length 0.40 m and cross-sectional area 2.0×10^{-7} m². Calculate the extension produced when a force of 5.0 N is applied to this straight wire.

extension =m

[3]

(d) Describe and explain, without further calculations, the difference in the strain energies stored in the straight wire and in the spring when a 5.0 N force is applied to each.

4. The figure below illustrates a conveyor belt for transporting young children up a snow-covered bank so that they can ski back down.

A child of mass 20 kg travels up the conveyor belt at a constant speed. The distance travelled up the slope is 24 m and the time taken is 55 s. The vertical height climbed in this time is 4.0 m.

- (a) For the child on the conveyor belt, calculate
 - (i) her speed

speed = \dots m s⁻¹

[2]

(ii) her kinetic energy

kinetic energy = J

[2]

(iii) the increase in her potential energy for the complete journey up the slope.

potential energy = J

(b)	(i)	The conveyor belt is designed to take a maximum of 15 children at any one time. Calculate the power needed to lift 15 children of average mass 20 kg through a height of 4.0 m in 55 s.						
		power = W	[0]					
			[2]					
	(ii)	The belt is driven by an electric motor. State two reasons why the motor needs a greater output power than that calculated in (b)(i) .						
	[Tota							
State the principle of conservation of energy.								

5.

[Total 1 mark]

The figure below shows a violin.

6.

Two of the wires used on the violin, labelled A and G are made of steel. The two wires are both 500 mm long between the pegs and support. The 500 mm length of wire labelled **G** has a mass of 2.0×10^{-3} kg. The density of steel is 7.8×10^{-3} kg m⁻³.

Show that the cross-sectional area of wire **G** is 5.1×10^{-7} m². (i)

The wires are put under tension by turning the wooden pegs shown in the figure. (ii) The Young modulus of steel is 2.0×10^{11} Pa. Calculate the tension required in wire **G** to produce an extension of 4.0×10^{-4} m.

tension =N

[3]

[1]

Wire A has a diameter that is half that of wire G. Determine the tension required (iii) for wire **A** to produce an extension of 16×10^{-4} m.

tension =N

(iv) State the law that has been assumed in the calculations in (ii) and (iii).

.....

[1] [Total 7 marks]

7. The results given in the table below are obtained in an experiment to determine the Young modulus of a metal in the form of a wire. The wire is loaded in steps of 5.0 N up to 25.0 N and then unloaded.

	loading	unloading	
load / N	extension / mm	extension /mm	
0.0	0.00	0.00	
5.0	0.24	0.24	
10.0	0.47	0.48	
15.0	0.71	0.71	
20.0	0.96	0.95	
25.0	1.20	1.20	

- (i) Using the results in the table and without plotting a graph, state and explain whether the deformation of the wire

(ii)

(iii) The wire tested is 1.72 m long and has a cross-sectional area of 1.80×10^{-7} m². Use the extension value given in the table for a load of 25.0 N to calculate the Young modulus of the metal of the wire.

Young modulus = Pa

[3]

- [Total 8 marks]
- 8. The figure below shows a simple pendulum with a metal ball attached to the end of a string.

When the ball is released from **P**, it describes a circular path. The ball has a maximum speed v at the bottom of its swing. The vertical distance between **P** and bottom of the swing is *h*. The mass of the ball is *m*.

- (i) Write the equations for the change in gravitational potential energy, E_p , of the ball as it drops through the height *h* and for the kinetic energy, E_k , of the ball at the bottom of its swing when travelling at speed *v*.
 - $E_{\rm p} =$ $E_{\rm k} =$

[1]

(ii) Use the principle of conservation of energy to derive an equation for the speed *v*. Assume that there are no energy losses due to air resistance.

- 9. Some countries in the world have frequent thunderstorms. A group of scientists plan to use the energy from the falling rain to generate electricity. A typical thunderstorm deposits rain to a depth of 1.2×10^{-2} m over a surface area of 2.0×10^{7} m² during a time of 900 s. The rain falls from an average height of 2.5×10^3 m. The density of rainwater is 1.0×10^3 kg m⁻³. About 30% of the gravitational potential energy of the rain can be converted into electrical energy at the ground.
 - Show that the total mass of water deposited in 900 s is 2.4×10^8 kg. (i)

(ii) Hence show that the average electrical power available from this thunderstorm is about 2 GW.

(iii) Suggest one problem with this scheme of energy production.

[2]

[3]

[1] [Total 6 marks]

10. The force against length graph for a spring is shown in Fig. 1.

Fig. 1

(a) Explain why the graph does not pass through the origin.

[1]

(b) State what feature of the graph shows that the spring obeys Hooke's law.

- [1]
- (c) The gradient of the graph is equal to the force constant k of the spring. Determine the force constant of the spring.

force constant = $\dots N m^{-1}$

(d) Calculate the work done on the spring when its length is increased from 2.0×10^{-2} m to 8.0×10^{-2} m.

work done = J

[2]

(e) One end of the spring is fixed and a mass is hung vertically from the other end. The mass is pulled down and then released. The mass oscillates up and down. Fig. 2 shows the displacement *s* against time *t* graph for the mass.

Explain how you can use Fig. 2 to determine the **maximum** speed of the mass. You are not expected to do the calculations.

[2] [Total 8 marks] **11.** The figure below shows a crane that is used to move heavy objects.

(iv) the minimum output power of the motor used to raise the mass.

			power = W	
				[1]
				[Total 7 marks]
12.	(a)	Define the Young modulus of a material.		
				[1]
	(h)			[1]
	(b)	Explain why the quantity strain has no units.		
				[1]
				[Total 2 marks]