		quark composit	tion		charge	
neutro	on					
proto	on					
			Fig. 9.1			
(ii)	Com	plete Fig. 9.2 to show the	composition of q	uarks.		
quar	k	charge	baryon nu	ımber	strangeness	
up			+ 1/			
dowr	n				0	
(b) Wh	Com	eutron decays it can prod	·		an electron.	
	Com	plete the decay equation l the the interaction responsil	uce particles that below for a neutrole	on. of the neu	utron.	
(i)	Com 1n - Nam Elect	plete the decay equation l	uce particles that below for a neutrolle ble for the decay	on. of the neu	utron.	
(i) (ii)	Com 1 n Nam Electropartic	plete the decay equation l the the interaction responsible trons and neutrons below	uce particles that below for a neutrole for the decay and to different general sections.	on. of the neu	utron.	

2	(a)	unstable nuclei.
		[2]
	(b)	Define the decay constant.
	(0)	Explain the technique of radioactive earlier deting
	(0)	Explain the technique of radioactive carbon-dating.
		[4]
	(d)	The activity of a sample of living wood was measured over a period of time and averaged to give 0.249 Bq. The same mass of a sample of dead wood was measured in the same way and the activity was 0.194 Bq. The half-life of carbon-14 is 5570 years.
		(i) Calculate
		1 the decay constant in y ⁻¹ for the carbon-14 isotope
		decay constant = y ⁻¹ [1]
		2 the age of the sample of dead wood in years.

Suggest why the activity was measured over a long time period and then averaged.
[1]
Explain why the method of carbon-dating is not appropriate for samples that are greater than 10 ⁵ years old.
[1]

3	a ga	nnetium-99m is a common medical tracer injected into patients before they have a scan with amma camera. Technetium-99m is a gamma emitter with a half-life of about 6 hours. Each ama ray photon has energy 2.2×10^{-14} J.
	A pa	atient is given a dose with an initial activity of 500 MBq.
	(a)	Explain what is meant by activity.
		[1]
	(b)	Calculate the initial rate of energy emission from the dose of technetium-99m.
		rate of energy emission =

(c)	Name and describe the function of the main components of a gamma camera.
	In your answer you should make clear how a good quality image can be achieved with these components.
	[5]
	[Total: 8]

fluor	deoxyglucose (FDG) is a radiopharmaceutical used for PET scans. It contains radioactive-18, which is a positron-emitter with a half-life of 6.6 × 10 ³ s. Ent is injected with FDG which has an initial activity of 250 MBq.	'e
(a)	alculate the decay constant of fluorine-18.	
	decay constant =s ⁻¹ [2	2]
(b)	now that the initial number of fluorine-18 nuclei in the FDG is about 2 × 10 ¹² .	
	cout 9.9% of the mass of FDG is fluorine-18. Use your answer in (b) to determine the initial ass of FDG given to the patient. The molar mass of fluorine-18 is 0.018 kg mol ⁻¹ .	
	mass =kg [3	3]

4

(d)	A typical PET scan takes 20 minutes. Determine the activity of FDG in the patient after this time.
	activity =MBq [2]
(e)	Positron emission tomography (PET) can be used to locate an area of increased activity within the brain. Describe the principles of PET.
	In your answer you should make clear how the position of increased activity is located.
Phy	rsicsAndMathsTutor.com [4]

[Total: 12]