|      | The following nuclear reaction occurs when a slow-moving neutron is absorbed by an isotope of uranium-235. |                                                |                                                                                                                                                                                                                                                                                             |                       |  |
|------|------------------------------------------------------------------------------------------------------------|------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|--|
|      |                                                                                                            | <sup>1</sup> <sub>0</sub> n +                  | $^{235}_{92}$ U $\rightarrow ^{141}_{56}$ Ba + $^{92}_{36}$ Kr + 3 $^{1}_{0}$ n                                                                                                                                                                                                             |                       |  |
| (i)  | Explain h                                                                                                  | ow this reactio                                | n is able to produce energy.                                                                                                                                                                                                                                                                |                       |  |
| (ii) | State in w                                                                                                 | /hat form the e                                | nergy is released in such a reaction.                                                                                                                                                                                                                                                       | [2]                   |  |
|      |                                                                                                            |                                                |                                                                                                                                                                                                                                                                                             |                       |  |
| The  | binding er                                                                                                 | nergy per nucle                                | eon of each isotope in <b>(a)</b> is given in Fig. 8.1                                                                                                                                                                                                                                      |                       |  |
|      |                                                                                                            | isotope                                        | binding energy per nucleon/MeV                                                                                                                                                                                                                                                              |                       |  |
|      |                                                                                                            | <sup>235</sup> <sub>92</sub> U                 | 7.6                                                                                                                                                                                                                                                                                         |                       |  |
|      |                                                                                                            | <sup>141</sup> <sub>56</sub> Ba                | 8.3                                                                                                                                                                                                                                                                                         |                       |  |
|      |                                                                                                            | <sup>92</sup> Kr                               | 8.7                                                                                                                                                                                                                                                                                         |                       |  |
| (i)  | Explain w                                                                                                  | hy the neutron                                 | Fig. 8.1 $_0^1$ n does not appear in the table above.                                                                                                                                                                                                                                       |                       |  |
| (ii) | Calculate                                                                                                  | the energy rel                                 | eased in the reaction shown in <b>(a)</b> .                                                                                                                                                                                                                                                 | [1]                   |  |
|      |                                                                                                            |                                                | energy =                                                                                                                                                                                                                                                                                    | MeV [2]<br>[Total: 6] |  |
|      | of u (i) (ii)                                                                                              | (i) Explain h  (ii) State in w  The binding en | of uranium-235.  (i) Explain how this reaction  (ii) State in what form the elements of the binding energy per nucleon solutions isotope  235 U 141 Ba 92 Kr  (i) Explain why the neutron solutions is the solution of the binding energy per nucleon solutions isotope  235 U 141 Ba 92 Kr | of uranium-235.       |  |

| 2 | A prof 2 | roton travelling at a high velocity is fired at a stationary proton. It stops momentarily at a distance $1.0 \times 10^{-15}$ m from the stationary proton. |
|---|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   | (a)      | Calculate the electrostatic force acting on each proton when separated by $2.0 \times 10^{-15}  \text{m}$ .                                                 |
|   | (b)      | force =                                                                                                                                                     |
|   | (c)      | Explain why the proton must have a very large velocity for the fusion to occur and the protons to remain together.                                          |
|   |          | [2]                                                                                                                                                         |
|   |          | [Total: 5]                                                                                                                                                  |
|   |          |                                                                                                                                                             |

**3** (a) In the core of a nuclear reactor, one of the many fission reactions of the uranium-235 nucleus is shown below.

$$^{235}_{92}U + ^{1}_{0}n \rightarrow ^{140}_{54}Xe + ^{94}_{38}Sr + 2^{1}_{0}n$$

(i) State one quantity that is conserved in this fission reaction.

.....[1]

(ii) Fig. 4.1 illustrates this fission reaction.

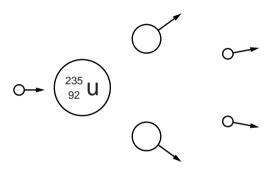



Fig. 4.1

Label all the particles in Fig. 4.1 and extend the diagram to show how a chain reaction might develop. [2]

**(b)** Fusion of hydrogen nuclei is the source of energy in most stars. A typical reaction is shown below.

$${}_{1}^{2}H + {}_{1}^{2}H \longrightarrow {}_{2}^{3}He + {}_{0}^{1}n$$

The  $^2_1\text{H}$  nuclei repel each other. Fusion requires the  $^2_1\text{H}$  nuclei to get very close and this usually occurs at very high temperatures, typically  $10^9\,\text{K}$ .

|       | mass of ${}_{1}^{2}$ H nucleus = 3.343 × 10 <sup>-27</sup> kg                                                                                                                      |
|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|       | mass of ${}_{2}^{3}$ He nucleus = 5.006 × 10 <sup>-27</sup> kg                                                                                                                     |
|       | mass of ${}_{0}^{1}$ n = 1.675 × 10 <sup>-27</sup> kg                                                                                                                              |
|       |                                                                                                                                                                                    |
|       |                                                                                                                                                                                    |
|       |                                                                                                                                                                                    |
|       |                                                                                                                                                                                    |
|       |                                                                                                                                                                                    |
|       |                                                                                                                                                                                    |
|       |                                                                                                                                                                                    |
|       |                                                                                                                                                                                    |
|       |                                                                                                                                                                                    |
|       |                                                                                                                                                                                    |
|       | energy =                                                                                                                                                                           |
| (ii)  | State in what form the energy in (b)(i) is released.                                                                                                                               |
|       | [1]                                                                                                                                                                                |
| /:::\ |                                                                                                                                                                                    |
| (iii) | The <sup>2</sup> <sub>1</sub> H nuclei in stars can be modelled as an ideal gas. Calculate the mean kinetic energy of the <sup>2</sup> <sub>1</sub> H nuclei at 10 <sup>9</sup> K. |
|       |                                                                                                                                                                                    |
|       |                                                                                                                                                                                    |
|       |                                                                                                                                                                                    |
|       |                                                                                                                                                                                    |
|       |                                                                                                                                                                                    |
|       |                                                                                                                                                                                    |
|       |                                                                                                                                                                                    |
|       | energy = J [2]                                                                                                                                                                     |
| (iv)  | Suggest why some fusion can occur at a temperature as low as 10 <sup>7</sup> K.                                                                                                    |
|       |                                                                                                                                                                                    |
|       |                                                                                                                                                                                    |
|       |                                                                                                                                                                                    |
|       | [1]                                                                                                                                                                                |
|       | [Total: 10]                                                                                                                                                                        |

(i) Use the data below to calculate the energy released in the fusion reaction above.

4 The isotopes of carbon-14 ( $^{14}_{6}$ C) and carbon-15 ( $^{15}_{6}$ C) are beta-minus emitters. The table in Fig. 5.1 shows the maximum kinetic energy of each electron emitted and the half-life of the isotope.

| isotope                      | maximum kinetic<br>energy / MeV | half-life  |
|------------------------------|---------------------------------|------------|
| <sup>14</sup> <sub>6</sub> C | 0.16                            | 5560 years |
| <sup>15</sup> C              | 9.8                             | 2.3s       |

Fig. 5.1

|     |      | 1 19. 3. 1                                                                                                                                       |
|-----|------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| (a) | Sta  | te one property common to all isotopes of an element.                                                                                            |
|     |      |                                                                                                                                                  |
|     |      | [1]                                                                                                                                              |
| (b) |      | e neutrons and protons inside each isotope experience fundamental forces. Name the two damental forces experienced by both neutrons and protons. |
|     | 1    |                                                                                                                                                  |
|     | 2    | [2]                                                                                                                                              |
| (c) | An   | isotope of carbon-15 decays into an isotope of nitrogen (N).                                                                                     |
|     | (i)  | Complete the nuclear reaction below.                                                                                                             |
|     |      | $^{15}_{6}$ C $\rightarrow \dots N + _{-1}^{0}$ e $+ \overline{v}$                                                                               |
|     |      | [1]                                                                                                                                              |
|     | (ii) | Use the quark model to state the changes taking place within the nucleus of the carbon-15 atom.                                                  |
|     |      |                                                                                                                                                  |
|     |      | [1]                                                                                                                                              |
| (d) | (i)  | Estimate the maximum speed of an electron from the nucleus of carbon-14.                                                                         |
|     |      |                                                                                                                                                  |
|     |      |                                                                                                                                                  |
|     |      |                                                                                                                                                  |
|     |      |                                                                                                                                                  |
|     |      | sneed - ms <sup>-1</sup> [2]                                                                                                                     |

| (ii)    | Suggest why the actual speed of the electron is much less than your answer in (i).                                                          |
|---------|---------------------------------------------------------------------------------------------------------------------------------------------|
| (e) (i) | Calculate the decay constant $\lambda$ in s <sup>-1</sup> of carbon-14.                                                                     |
|         |                                                                                                                                             |
|         | $\lambda = \dots s^{-1}$ [2]                                                                                                                |
| (ii)    | The molar mass of carbon-14 is $14 \mathrm{g}\mathrm{mol}^{-1}$ . Show that $1.0 \mathrm{mg}$ of carbon-14 has $4.3 \times 10^{19}$ nuclei. |
|         |                                                                                                                                             |
|         |                                                                                                                                             |
| (iii)   | Calculate the activity of the 1.0 mg mass of carbon-14.                                                                                     |
|         |                                                                                                                                             |
|         |                                                                                                                                             |
|         | activity =Bq [2]                                                                                                                            |

| (f) | The isotope of carbon-14 is very useful in determining the age of a relic (e.g. ancient wooden axe) using a technique known as carbon-dating.  Describe carbon-dating and explain one of its major limitations. |  |  |  |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|     |                                                                                                                                                                                                                 |  |  |  |
|     |                                                                                                                                                                                                                 |  |  |  |
|     |                                                                                                                                                                                                                 |  |  |  |
|     |                                                                                                                                                                                                                 |  |  |  |
|     |                                                                                                                                                                                                                 |  |  |  |
|     |                                                                                                                                                                                                                 |  |  |  |
|     |                                                                                                                                                                                                                 |  |  |  |
|     |                                                                                                                                                                                                                 |  |  |  |
|     |                                                                                                                                                                                                                 |  |  |  |
|     |                                                                                                                                                                                                                 |  |  |  |
|     | [4]                                                                                                                                                                                                             |  |  |  |
|     | [Total: 17]                                                                                                                                                                                                     |  |  |  |

| 5 | (a) | Explain the term binding energy of a nucleus.                                                           |
|---|-----|---------------------------------------------------------------------------------------------------------|
|   |     |                                                                                                         |
|   |     |                                                                                                         |
|   |     | [2]                                                                                                     |
|   | (b) | Nuclear fusion takes place in the core of the Sun. One of the simplest fusion reactions is shown below. |

$$_{1}^{2}\text{H} + _{1}^{2}\text{H} \rightarrow _{2}^{4}\text{He}$$

(i) The binding energy per nucleon of  ${}^2_1H$  is  $1.8 \times 10^{-13} J$  and the binding energy per nucleon of  ${}^4_2He$  is  $1.1 \times 10^{-12} J$ . Show that the energy released in the reaction is  $3.7 \times 10^{-12} J$ .

| (ii) | The Sun radiates its energy uniformly through space. The mean intensity of the Sun's radiation reaching the Earth's atmosphere is about $1400 \mathrm{Wm^{-2}}$ . The mean radius of the Earth's orbit round the Sun is $1.5 \times 10^{11} \mathrm{m}$ . |                                                                                                                                                                           |  |  |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|      | 1                                                                                                                                                                                                                                                         | Show that the mean power radiated from the surface of the Sun is $4.0 \times 10^{26} \text{W}$ .                                                                          |  |  |
|      |                                                                                                                                                                                                                                                           | [2]                                                                                                                                                                       |  |  |
|      | 2                                                                                                                                                                                                                                                         | Assume all the radiated energy from the Sun comes from the fusion reaction shown in <b>(b)</b> . Estimate the number of helium-4 nuclei produced every second by the Sun. |  |  |
|      |                                                                                                                                                                                                                                                           | number =s <sup>-1</sup> [2]                                                                                                                                               |  |  |
|      |                                                                                                                                                                                                                                                           | [Total: 8]                                                                                                                                                                |  |  |
|      |                                                                                                                                                                                                                                                           |                                                                                                                                                                           |  |  |