1	The	nuclear reaction represented by the equation
		$^{235}_{92}U + ^{1}_{0}n \rightarrow ^{94}_{39}Y + ^{139}_{53}I + 3^{1}_{0}n$
	es place in the core of a nuclear reactor at a power station.	
	(a)	Describe how this reaction can lead to a chain reaction.
		[1]
	(b)	Explain the role of fuel rods, control rods and a moderator in a nuclear reactor.
Ø		In your answer you should make clear how chain reactions are controlled in the reactor.

(c) In the nuclear reactor of a power station, each fission reaction of urania $3.2 \times 10^{-11} \text{J}$ of energy. The electrical power output of the power station is efficiency of the system that transforms nuclear energy into electrical energy is 22				
	(i)	the total power output of the reactor core		
		power output = W [1]		
	(ii)	the total energy output of the reactor core in one day		
		$1 \text{ day} = 8.64 \times 10^4 \text{ s}$		
		energy output =		
	(iii)	the mass of uranium-235 converted in one day. The mass of a uranium-235 nucleus is $3.9 \times 10^{-25} \mathrm{kg}$.		
		mass = kg [2]		
(d)	Disc	cuss the physical properties of nuclear waste that makes it dangerous.		
		[2]		

2 (á	a)	In experiments carried out to determine the nature of atoms, alpha particles were fired at thin metal foils. Describe how the alpha-particle scattering experiments provide evidence for the existence, charge and size of the nucleus.
	>	In your answer, you should make clear how your conclusions link with your observations.
(I	b)	Describe the nature and range of the three forces acting on the protons and neutrons in the nucleus.

PhysicsAndMathsTutor.com [5]

(c)	The radius of a $^{235}_{92}$ U nucleus is 8.8×10^{-15} m. The average mass of a nucleon is 1.7×10^{-27} kg.		
	(i)	Estimate the average density of this nucleus.	
		density = kg m ⁻³ [3]	
	(ii) State one assumption made in your calculation.		
		[1]	
		[Total: 14]	

3	(a)	Describe the process of induced nuclear fission.
	/I- \	[2]
	(D)	Explain how nuclear fission can provide energy.
		[2]
	(c)	Suggest a suitable material which can be used as a moderator in a fission reactor and explain its role.
		[3]
		[Total: 7]

(a)	A sample of a radioactive isotope contains 4.5×10^{23} active undecayed nuclei. The half-life of the isotope is 12 hours. Calculate			
	(i)	the initial activity of the sample		
	(ii)	$activity = \dots \\ s^{-1} \ \textbf{[2]}$ the number of active nuclei of the isotope remaining after 36 hours		
((iii)	number =		
(b)	Fxr	number =[2] Dlain why the activity of a radioactive material is a major factor when considering the safety		
(5)		cautions in the disposal of nuclear waste.		
		[2] [Total: 7]		

4

5	The by temi	ere a beta issioi	are two types of beta decay, beta-plus and beta-minus. An isotope of carbon $^{15}_{6}$ C emission into an isotope of nitrogen $^{15}_{7}$ N. An isotope of phosphorus $^{30}_{15}$ P decays n into an isotope of silicon $^{30}_{14}$ Si.	decays by beta
	(a)	Cor	mplete the following decay equations for the carbon and phosphorus isotopes.	
		(i)	carbon decay	
			$^{15}_{6}$ C \rightarrow e + N +	
		(ii)	phosphorus decay	
			$^{30}_{15}P \rightarrowe +Si +$	[3]
	(b)	Sta	te the two beta decays in terms of a quark model of the nucleons.	
		(i)	beta-plus decay	
		(ii)	beta-minus decay	
				[2]
	(c)	Nar	me the force responsible for beta decay.	
				[1]
			[Total: 6]