| 1 | (a) | State Hubble's Law.                                                                                                                                   |
|---|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------|
|   |     |                                                                                                                                                       |
|   |     | [1]                                                                                                                                                   |
|   | (b) | The dark lines of the spectrum observed from a distant galaxy are red-shifted by 15% of their normal wavelengths.                                     |
|   |     | The Hubble constant is estimated to be $65 \mathrm{km}\mathrm{s}^{-1}\mathrm{Mpc}^{-1}$ . One parsec = $3.1 \times 10^{16} \mathrm{m}$ .              |
|   |     | (i) Show that the speed of the galaxy is $4.5 \times 10^7 \mathrm{m  s^{-1}}$ .                                                                       |
|   |     |                                                                                                                                                       |
|   |     |                                                                                                                                                       |
|   |     | [1]                                                                                                                                                   |
|   |     | (ii) Estimate the distance of the galaxy from the Earth.                                                                                              |
|   |     |                                                                                                                                                       |
|   |     |                                                                                                                                                       |
|   |     | distance = m [2]                                                                                                                                      |
|   |     | (iii) Estimate the age of the universe in years.                                                                                                      |
|   |     | 1 year = $3.2 \times 10^7$ s                                                                                                                          |
|   |     |                                                                                                                                                       |
|   |     |                                                                                                                                                       |
|   |     | age = y [2]                                                                                                                                           |
|   |     |                                                                                                                                                       |
|   | (c) | The age of the universe is calculated from the time of the big bang. Describe <b>two</b> observations that directly support the idea of the big bang. |
|   |     |                                                                                                                                                       |
|   |     |                                                                                                                                                       |
|   |     |                                                                                                                                                       |
|   |     |                                                                                                                                                       |
|   |     |                                                                                                                                                       |
|   |     | [0]                                                                                                                                                   |

|     |      |                                               | <br>           | <br>              |
|-----|------|-----------------------------------------------|----------------|-------------------|
| (b) |      | eter Tou Ceti bee a per                       | accords of are | <br>[2]           |
| (b) |      | star Tau Ceti has a par                       |                |                   |
|     | (i)  | in parsec (pc)                                | -4.1.          |                   |
|     |      |                                               |                |                   |
|     |      |                                               |                |                   |
|     |      |                                               |                |                   |
|     |      |                                               | distance =     | <br>pc [1]        |
|     | (ii) | in light year (ly).                           |                |                   |
|     |      | $1 \text{ pc} = 3.1 \times 10^{16} \text{ m}$ |                |                   |
|     |      |                                               |                |                   |
|     |      |                                               |                |                   |
|     |      |                                               |                |                   |
|     |      |                                               | distance =     | <br>ly <b>[2]</b> |
|     |      |                                               |                | [Total: 5]        |

**2** (a) Define the *parsec*. Draw a diagram to illustrate your answer.

| 3   | (a) | (i)  | Describe the formation of a star such as our Sun and its most probable evolution. |       |
|-----|-----|------|-----------------------------------------------------------------------------------|-------|
| (G) |     |      | In your answer you should make clear how the steps in the process are sequenced.  |       |
|     |     |      |                                                                                   |       |
|     |     |      |                                                                                   |       |
|     |     |      |                                                                                   |       |
|     |     |      |                                                                                   |       |
|     |     |      |                                                                                   |       |
|     |     |      |                                                                                   |       |
|     |     |      |                                                                                   |       |
|     |     |      |                                                                                   |       |
|     |     |      |                                                                                   |       |
|     |     |      |                                                                                   |       |
|     |     |      |                                                                                   |       |
|     |     |      |                                                                                   |       |
|     |     |      |                                                                                   |       |
|     |     |      |                                                                                   |       |
|     |     |      |                                                                                   |       |
|     |     |      |                                                                                   |       |
|     |     |      |                                                                                   |       |
|     |     |      |                                                                                   | [6]   |
|     |     | (ii) | Describe the probable evolution of a star that is much more massive than our Sun. | [~]   |
|     |     | (11) | Describe the probable evolution of a star that is much more massive than our sun. |       |
|     |     |      |                                                                                   | ••••• |
|     |     |      |                                                                                   |       |
|     |     |      |                                                                                   |       |

| (b) | The present mass of the Sun is $2.0 \times 10^{30}$ kg. The Sun emits radiation at an average rate of $3.8 \times 10^{26}$ Js <sup>-1</sup> . Calculate the time in years for the mass of the Sun to decrease by one millionth of its present mass. |                                                                                                                                                                                 |  |  |  |  |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
|     | 1 y =                                                                                                                                                                                                                                               | $= 3.2 \times 10^7 \text{s}$                                                                                                                                                    |  |  |  |  |
|     |                                                                                                                                                                                                                                                     | time = y <b>[3]</b>                                                                                                                                                             |  |  |  |  |
| (c) | The<br>Sun                                                                                                                                                                                                                                          | following nuclear equation summarises a typical fusion reaction cycle that occurs in the                                                                                        |  |  |  |  |
|     |                                                                                                                                                                                                                                                     | $4_{1}^{1}H \rightarrow {}_{2}^{4}He + 2_{1}^{0}e + 2v$                                                                                                                         |  |  |  |  |
|     | (i)                                                                                                                                                                                                                                                 | Explain the process of nuclear fusion in the core of the Sun. In your explanation refer to the conditions necessary for fusion to occur.                                        |  |  |  |  |
|     |                                                                                                                                                                                                                                                     |                                                                                                                                                                                 |  |  |  |  |
|     |                                                                                                                                                                                                                                                     |                                                                                                                                                                                 |  |  |  |  |
|     |                                                                                                                                                                                                                                                     |                                                                                                                                                                                 |  |  |  |  |
|     |                                                                                                                                                                                                                                                     |                                                                                                                                                                                 |  |  |  |  |
|     |                                                                                                                                                                                                                                                     |                                                                                                                                                                                 |  |  |  |  |
|     |                                                                                                                                                                                                                                                     | [4]                                                                                                                                                                             |  |  |  |  |
|     | (ii)                                                                                                                                                                                                                                                | Name two forms of energy produced in thermonuclear reactions.                                                                                                                   |  |  |  |  |
|     |                                                                                                                                                                                                                                                     | 1                                                                                                                                                                               |  |  |  |  |
|     |                                                                                                                                                                                                                                                     | 2[2]                                                                                                                                                                            |  |  |  |  |
| (   | (iii)                                                                                                                                                                                                                                               | The binding energy per nucleon of ${}^1_1\text{H}$ and ${}^4_2\text{He}$ are 0 and 7.2 MeV respectively. Calculate the energy produced in joules for the fusion reaction above. |  |  |  |  |
|     |                                                                                                                                                                                                                                                     |                                                                                                                                                                                 |  |  |  |  |
|     |                                                                                                                                                                                                                                                     |                                                                                                                                                                                 |  |  |  |  |
|     |                                                                                                                                                                                                                                                     |                                                                                                                                                                                 |  |  |  |  |
|     |                                                                                                                                                                                                                                                     | oporav –                                                                                                                                                                        |  |  |  |  |

Physics And Maths Tutor.com

[Total: 19]