1	(a)	Olbers' paradox is based on two assumptions about the nature of our Universe. State these two assumptions.
		[6]

(b) Fig. 2.1 shows how the recessional speed v of galaxies varies with their distance d from the Earth.

Fig. 2.1

(i) Use Fig. 2.1 to determine the Hubble constant.

Hubble constant =
$$km s^{-1} Mpc^{-1}$$
 [2]

		1 year = 3.2×10^7 s and 1 pc = 3.1×10^{16} m	
(c)	(i)	age =y Calculate the critical density of the Universe using the Hubble constant determined (b)(i).	
	(ii)	$\mbox{critical density} = \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	
(d)	De:	scribe the evidence for the hot big bang model of the Universe.	
			[4 ⁻

(ii) Hence estimate the age of the Universe in years.

2 (a) Describe briefly the sequence of events which occur in the formation of a star, such as our Sun, from interstellar dust and gas clouds.

In your answer, you should make clear how the steps in the process are sequenced.
[4

(b) Fig. 8.1 shows the evolution of a star similar to our Sun on a graph of intensity of emitted radiation against temperature.

Fig. 8.1

	[Tota	l: 8]
		. [2]
(11)	Explain why, in its evolution, the star is originest when at its coolest.	
(ii)		
		. [2]
(1)	characteristics of a white dwarf.	tne

3	(a)	State Olbers' paradox and the two assumptions made about the
		Universe.
		[3]
(b)	Stat	e Hubble's law and explain how it resolves Olbers' paradox.
	•••••	
		[10]
		[2]
(c)	A ga	alaxy at a distance of 1.4×10^{25} m is observed to be receding from the Earth at a velocity 1.4×10^7 m s ⁻¹ .
	(i)	Calculate the Hubble constant H_0 based on this data.
	(')	Calculate the Habbie constant 710 based on the data.
		$H_0 = \dots $ unit [3]

(ii) Estimat	е
--------------	---

1	the age in years of the Universe
	1 year = 3.2×10^7 s

2 the maximum distance in parsec (pc) we can observe from the Earth.

$$1 \text{ pc} = 3.1 \times 10^{16} \text{ m}$$

[Total: 12]

1	(a)	Describe the formation of the Sun.	
Ø		In your answer, you should make clear how the steps of the process are sequenced.	
			[J]
	(b)	After the death of a low-mass star such as our Sun, the remnant core is a white dwarf.	
		State two properties of a white dwarf.	
			[2]

(c)	The ultimate fate of the universe depends on its density.			
	(i)	State the fate of the universe if its density is equal to the critical density.		
		[1]		
	(ii)	According to some cosmologists, the age of the universe is $4.4\times10^{17}\text{s}$ (about 14 billion years). Show that according to this age, the critical density of the universe is about $10^{-26}\text{kg}\text{m}^{-3}$.		
		[3]		
	(iii)	Estimate the number of protons per cubic metre of space.		
		mass of proton = $1.7 \times 10^{-27} \text{kg}$		
		number = m ⁻³ [2]		
(d)	abo	e universe began from a big bang. At an early stage of the universe, the temperature was but 10 ⁸ K. The expansion of the universe led to cooling. The present temperature of the verse is about 2.7 K. For a single electron , determine the ratio		
		speed of electron at 10 ⁸ K speed of electron at 2.7 K		
		ratio =[2]		

PhysicsAndMathsTutor.com

[Total: 15]