G	Question		Answer	Marks	Guidance
1	(a)		A core / 'star' left behind after a red giant (has shed its outer layers)	B1	 Allow: It is the core of a red giant Allow: It is the remnant of a low-mass star Allow: A core / 'star' supported by Fermi pressure / electron degeneracy (pressure) with maximum mass of 1.4(4) solar masses / 1.4(4) <i>M</i>_o / Chandrasekhar limit Not: It is a collapsing red giant
	(b)		(parallax = 1/d)		
			$d = 0.0059^{-1}$ (pc = 169 .49 pc)	C1	Allow other correct methods
			distance = $0.0059^{\circ} \times 3.26$		
			distance = 550 ly	A1	
	(c)	(i)	power per (unit) area or power/area	B1	Allow 'energy per (unit) area per unit time' Not : power per m ²
		(ii)	1 (density = mass/ $\frac{4}{3}\pi r^3 \propto \text{mass}/r^3$)		
			ratio = $\frac{12}{(1.1 \times 10^5)^3}$	C1	
			ratio = 9.0×10^{-15}	A1	Allow: 9.0×10^{-15} : 1 Allow: 1 sf answer of 9×10^{-15}
			2 (power = intensity × surface area)		
			power $\propto T^4 r^2$	C1	
			ratio = $\frac{4300^4 \times (1.1 \times 10^5)^2}{25000^4}$	C1	
			ratio = 1.1×10^7	A1	Note : Answer to 3 sf is 1.06×10^7 Allow : 1.1×10^7 : 1
			Total	9	

Question		ion	Answer	Marks	Guidance
2	(a)		recessional speed / velocity of <u>galaxy</u> is proportional to its distance (from us)	B1	Allow : recessional speed of <u>galaxy</u> = Hubble constant × distance
	(b)	(i)	<i>v</i> = 1010 (10 ³ m s ⁻¹) <i>d</i> in the range 4.47 to 4.54 (10 ²³ m)	B1 B1	Note : Answer to 4 sf is 1014 (10 ³ m s ⁻¹)
		(ii)	(Straight line drawn through the points gradient = Hubble constant, H_0) gradient = 2.24×10^{-18} (s ⁻¹) age = $(2.24 \times 10^{-18})^{-1}$ age = 4.46×10^{17} (s) age = 1.4×10^{10} (y)	C1 C1 A1	Allow: gradient in the range 2.21 to 2.27 × 10 ⁻¹⁸ Allow ecf from incorrect value of the gradient Allow: A maximum of 2 marks if values from the table are used instead of the gradient of the line drawn on Fig. 11.2 Note: No marks for a bald 14 billion years
	(c)		 Big bang: Creation / birth / expansion / evolution of the universe or The universe was very hot / very dense / singularity (at the start) Evidence: Any two from: Microwave / background radiation / 3 K (or 2.7 K) Existence of (primordial) helium / lithium / lighter ele- ments Tiny variation (or ripples) in (background) temperature 	B1 B1 × 2	Not : More matter than antimatter / baryonic asymmetry
			Total	9	

Question		Answers	Marks	Guidance
3	(a)	$V = \frac{4}{3}\pi \times (6 \times 10^{3})^{3} \text{ or } V = 9.05 \times 10^{11} \text{ (m}^{3}\text{)}$ density = $\frac{2.0 \times 10^{30}}{\frac{4}{3}\pi \times (6 \times 10^{3})^{3}}$	C1 C1	Note : An incorrect equation here for <i>V</i> prevents this and any subsequent marks.
		density = $2.2 \times 10^{18} \text{ kg m}^{-3}$	A1	The correct unit must also be included to score this A1 mark. Allow 2 marks for 2.76 \times 10 ¹⁷ kg m ⁻³ – 12 km used instead of 6 km for the radius.
	(b)	$g \propto 1/l^2$		
		ratio = $\left(\frac{1.4 \times 10^9}{12 \times 10^3}\right)^2$ or ratio = $\left(\frac{0.7 \times 10^9}{6 \times 10^3}\right)^2$	C1	
		ratio = 1.4×10^{10}	A1	Note : The answer to 3 sf is 1.36×10^{10} . Allow 1 mark for 7.3×10^{-11} – inverse of the ratio.
	(C)	(p = 1/d)		
		$d = \frac{8.6 \times 9.5 \times 10^{15}}{3.1 \times 10^{16}}$ (pc) or $d = 2.64$ (pc)	C1	
		p = 0.38 (arc seconds)	A1	Allow full credit for alternative methods.
	(d)	$\left(\frac{\Delta\lambda}{\lambda}=\frac{v}{c}\right)$		
		fractional change = $\frac{7600}{3.0 \times 10^8}$	C1	
		percentage change = 2.5×10^{-3} %	A1	Allow 1 mark for 2.5×10^{-5} (factor of 100 missed out).
	(e)	The suggestion is incorrect because Hubble's law applies to (distant receding) galaxies.	B1	Do not allow this mark if 'Sirius / star is moving <u>towards</u> us' is also included.
		The suggestion is incorrect because Hubble's law does not apply to stars in our own galaxy.		
		Total	10	

_

Question		Answers	Marks	Guidance
4	(a)	The universe is homogeneous.	B1	
		and isotropic (on a large scale).	B1	
	(1.)		D 4	
	(d)	tions.	B1	Allow the microwave (background radiation) is <u>isotropic</u> .
		These microwaves correspond to a temperature of 2.7 K or The temperature of the universe is 2.7 K.	B1	Allow 3 K
		The expansion of the universe following the big bang led to cooling and hence we observe microwaves rather than short wavelength e.m. waves / gamma waves.	B1	Allow - The short e.m. / gamma waves during the early stages of the universe have been 'stretched out' / 'red-shifted' to microwaves by the expansion.
	(c)	$(\rho = \frac{3H_0^2}{8\pi G})$ $H_0 = \sqrt{\frac{8\pi \times 6.67 \times 10^{-11} \times 9.7 \times 10^{-27}}{3}}$ $H_0 = 2.328 \times 10^{-18} (s^{-1})$	C1	Allow any subject
		(age = $1/H_0$) age = $\frac{1}{2.328 \times 10^{-18}}$ or age = 4.3×10^{17} (s) age = 1.4×10^{10} (y)	C1 A1	Answer to 3 sf is 1.36×10^{10} (y)
		Total	8	

Question		on	er	Marks	Guidance
5	(a		(distance =) $3.0 \times 10^8 \times 3.16 \times 10^7$ distance = 9.48×10^{15} (m) $\approx 9.5 \times 10^{15}$ (m)	B1	Allow: (distance =) $3.0 \times 10^8 \times 365(\frac{1}{4}) \times 24 \times 3600$ Allow 1 mark for bald 9.48×10^{15} (m)
	(b)		Correct labelling of 1 pc, 1 AU and 1"	B1	Allow: 'hypotenuse' labelled as 1 pc
	(c)	(i)	(distance =) $9.5 \times 10^{15} \times 2.1 \times 10^{7}$ (m) or 2.0×10^{23} (m) (distance in pc =) $2.0 \times 10^{23}/3.1 \times 10^{16}$ distance = 6.4×10^{6} (pc)	C1 A1	Possible ecf from (a)
		(ii)	(time =) $10^{44}/4 \times 10^{26}$ (s) or 2.5×10^{17} (s) (time =) $2.5 \times 10^{17}/3.16 \times 10^{7}$ time = 7.9×10^{9} years	C1 A1	Allow : 1 sf answer of 8×10^9 years
	(d)		 Any <u>one</u> from: Very dense / infinite density / very small / singularity Any <u>one</u> from: (Very strong gravitational field therefore) light cannot escape from it / curves space / slows down time / emits Hawking radiation 	B1 B1	
			Total	8	