1 Fig. 3.1 represents the planet Jupiter. The centre of the planet is labelled as **O**.

Fig. 3.1

- (a) Draw gravitational field lines on Fig. 3.1 to represent Jupiter's gravitational field. [2]
- (b) Jupiter has a radius of $7.14 \times 10^7 \, \text{m}$ and the gravitational field strength at its surface is $24.9 \, \text{N kg}^{-1}$.
 - (i) Show that the mass of Jupiter is about 2×10^{27} kg.

[3]

(ii) Calculate the average density of Jupiter.

density = $kg m^{-3}$ [2]

[Total: 7]

2	(a)	The molar mass of hydrogen gas is $2.02 \times 10^{-3} \text{kg} \text{mol}^{-1}$. Calculate the mass of a hydrogen
		molecule.
		mass = kg [2]
	(b)	The temperature of the Earth's upper atmosphere is about 1100 K. Show that at this temperature the mean kinetic energy of an air molecule is about 2 \times 10 ⁻²⁰ J.
		[2]
	(c)	Show that the speed of a helium atom of mass 6.6×10^{-27} kg at a temperature of 1100 K is about $2.5 \mathrm{km s^{-1}}$.
		[2]
	(d)	The <i>escape velocity</i> from the Earth is 11 km s ⁻¹ . The escape velocity is the minimum vertical velocity a particle must have in order to escape from the Earth's gravitational field. Explain why helium atoms still escape from the Earth's atmosphere.
		[2]

[Total: 8]