Question		on	Expected Answers	Marks	Additional guidance
1	а		arrows (at least one) indicating direction is towards the planet. All lines looking as though they would meet at the centre judged by eye	B1 B1	At least 4 drawn and care taken Some of the lines must be outside the planet.
	b	i	(mg = GMm/r ² and hence) $M = gr2/G$ correct substitution $M = 24.9x(7.14 \times 10^{7})^{2}/6.67\times 10^{-11}$ $= 1.9 \times 10^{27}$ Kg (i.e about 2×10^{27})	C1 M1 A1	Equation needs to be rearranged as shown for C1 mark
		ii	correct substitution into V=(4/3) π r ³ = (4/3) π (7.14x10 ⁷) ³ {= 1.52 x 10 ²⁴ m ³ } density = mass/volume = 1.9 x10 ²⁷ /1.52 x 10 ²⁴ = 1250 kg m ⁻³	C1 A1	If m= 2×10^{27} kg is used d = 1312 scores 2 marks
			Total	7	

Question		on	Answer	Marks	Guidance
2	(a)		Mass of one hydrogen molecule = $2.02 \times 10^{-3} / 6.02 \times 10^{23}$	C1	
			Mass = 3.4×10^{-27} (kg)	A1	
	(b)		Mean k.e = $3kT/2$		
			Mean ke = 3/2 x 1.38 x 10 ⁻²³ x 1100	B1	
			Mean ke = 2.3×10^{-20} (J)	B1	
			Mean ke $\approx 2 \times 10^{-20}$ (J)	A0	
	(c)		$E_{k} = \frac{1}{2} mv^{2}$ $2.3 \times 10^{-20} = \frac{1}{2} \times 6.6 \times 10^{-27} v^{2}$ $v^{2} = (2 \times 2.3 \times 10^{-20} / 6.6 \times 10^{-27}) v = (2 \times 2.3 \times 10^{-20} / 6.6 \times 10^{-27})^{1/2}$ $v = 2.6 \times 10^{3} (\text{m s}^{-1})$	M1 A1	Note : Full credit to be given for the use of 2×10^{-20} (J) from (b) giving $v = 2.5 \times 10^3$ (ms ⁻¹) Note: If 3.36×10^{-27} is used from (a) (hydrogen molecules) then speed = 3.68×10^3 m s ⁻¹ and scores max 1 mark
	(d)		Helium atoms have a range of speeds / kinetic energies Hence some atoms have a velocity greater than 11 km s ⁻¹ / escape velocity	M1 A1	Accept equivalent wording or suitable diagram
			Total	8	