Question	Expected Answers	Marks	Additional guidance
1 (a) (i)	Horizontal component of L provides the centripetal force (WTTE)	B1	
	Vertical <u>component</u> of L balances the weight (WTTE)	B1	
(a) ($F = mv^2/r$ correct rearranged into $v = \sqrt{(Fr/m)}$	C1	Allow correct substitution of
	$v = \sqrt{(1.8 \times 10^6 \times 2000/1.2 \times 10^5)} = 173 \text{ m s}^{-1} \text{ (or } 170)$	A1	values into $F = mv^2/r$ for C1 mark
(b)	$mv^2/r = GMm/r^2$	B1	Do not allow a bare $v^2 = GM/r$ for
	$T = 2\pi r/v \qquad \qquad A_{\pi^2} r^3$	M1	the first mark – we need to see
	Correct manipulation of equations to give $T^2 = \frac{4\pi T}{GM}$	A1	where this has come from.
(C)	Equatorial orbit (WTTE) (QWC mark)	B1	QWC equatorial or equator must
	Period is 24h/1day/same as Earth OR moves from West to East (WTTE)	B1	be spelled correctly
(C) (Correct rearrangement of $T^2 = (4\pi^2 r^3/GM)$ to give $r^3 = T^2GM/4\pi^2$	C1	$(1 \text{ day} = 8.64 \text{ x}10^4 \text{ s} \text{ is given on})$
	correct sub. $r^3 = \{6.67 \times 10^{-11} \times 6.0 \times 10^{24} \times (8.64 \times 10^4)^2\}/4\pi^2 = 7.57 \times 10^{22}$	C1	the data sheet).
	$r = 4.23 \times 10^7 m$ (or 4.2 or 4.3 x 10 ⁷)	A1	For those who use $g = GM/r^2$
			with $g = 9.81$ award 1 mark
			for $r = 6.4 \times 10^6$ m.
	Total	12	

Question		on		Answer Mar		Guidance		
2	(a)	(i)	$g = \frac{v^2}{r}$ or $v^2 = \frac{GM}{r}$		C1	Correct formula in any form Allow: use of <i>a</i> for <i>g</i>		
			$v = \sqrt{gr}$					
			$\mathbf{v} = \sqrt{7.7 \times 7.2 \times 10^6}$		C1	Mark is for substitution (Note Mass of Earth is 6.0 x 10 ²⁴ kg) Any use of r = 800 km is WP scores 0/3		
			$v = 7400 \text{ (m s}^{-1}\text{)}$		A1	Note: Answer to 3 sf is 7450 (m s ⁻¹)		
		(ii)	$T = \frac{2\pi r}{v}$	$T^2 = \frac{4\pi^2 r^3}{GM}$		Allow: possible ecf for <i>v</i> from (a)(i)		
			$T = \frac{2\pi \times 7.2 \times 10^6}{7450}$	$T^{2} = \frac{4\pi^{2} (7.2 \times 10^{6})^{3}}{6.67 \times 10^{-11} \times 6 \times 10^{24}}$	C1	No ecf for use of $r = 6.4 \times 10^6$ again or use of r = 800 km Both score 0/2		
			= 6100 (s)	T = 6100 (s)	A1	Note: Answer to 3 sf using v = 7400 is 6110 (s) Answer to 3 sf using v = 7450 is 6070 (s)		
	(b)	(i)	Number of orbits = $\frac{24 \times 3600}{6080}$	(= 14.2)	B1	Allow any correct method Allow ora		
			≈ 14			No ecf from a(ii)		
		(ii)	Circumference = $2\pi r$		C1	Allow: Circumforence $= 2\pi r$ (C1)		
			<u>equatorial circumference</u> = 2 width of photograph	$\frac{2\pi \times 6400}{3000} = 13.4$	C1	length of equator covered per orbit = $2\pi \times 6.4 \times 10^3/14$ (C1) (= 2872)		
			(But each orbit crosses the equ number of orbits = 6.7	uator twice hence)	A1	(But each orbit crosses the equator twice hence) min width to be photographed = $\frac{1}{2} \times 2872$ = 1400 km (A1)		
			This is fewer than 14 orbits so be photographed (AW)	whole of Earth's surface can	A0	< 3000 km so all of Earth's surface can be photographed in one day (A0)		

Q	uesti	on	Answer	Marks	Guidance
	(c)		suitable example: eg weather / spy / surveying / mapping / GPS	B1	Ignore TV / radio / communications
			Total	10	

Question		n	Answer	Marks	Guidance
3	(a)		Force is proportional to the product of the masses and inversely proportional to the square of their separation (AW)	B1	Allow: $F = \frac{GmM}{r^2}$ with all symbols defined.
	(b)	(i)	$mg = \frac{GmM_{J}}{r^{2}}$ $M_{J} \left(= \frac{g r^{2}}{G} \right) = \frac{7.5 \times (1.3 \times 10^{8})^{2}}{6.67 \times 10^{-11}}$	C1 C1	Allow: formula with m cancelled Allow: use of $T^2 = \frac{4\pi^2 r^3}{GM_J} \Rightarrow M_J = \frac{4\pi^2 (1.3 \times 10^8)^3}{6.67 \times 10^{-11} \times (7.2 \times 60^2)^2}$ Note: mark is for substitution with any subject
			$M_J = 1.9 \times 10^{27}$ (kg)	A1	
		(ii)	$\frac{g_M}{g_A} = \frac{r_A^2}{r_M^2}$ $\frac{g_M}{7.5} = \frac{\left(1.3 \times 10^8\right)^2}{\left(2.4 \times 10^{10}\right)^2}$ $g_M = 2.2 \times 10^{-4} (N \text{ kg}^{-1})$	C1 A1	Allow: use of $g = \frac{GM_J}{r^2}$ with possible ecf for M_J from (b)(i) $g_M = \frac{(6.67 \times 10^{-11}) \times (1.9 \times 10^{27})}{(2.4 \times 10^{10})^2}$ Note: mark is for substitution $g_M = 2.2 \times 10^{-4}$ (N kg ⁻¹)
		(iii)	$T^{2} \propto r^{3} \text{OR} \qquad T^{2}/r^{3} = \text{constant} \ (= 4\pi^{2}/GM_{J})$ $\frac{T_{M}^{2}}{7.2^{2}} = \frac{\left(2.4 \times 10^{10}\right)^{3}}{\left(1.3 \times 10^{8}\right)^{3}}$ $T_{M} = 1.8 \text{ x10}^{4} \text{ (hours)}$	C1 C1 A1	Allow: possible ecf for M_J from b(i) Allow: use of other correct formulae Note: mark is for substitution Note using times in seconds gives $T_M = 6.49 \times 10^7$ (s) scores 2 marks
			Total	9	

Question		on	Answer	Marks	Guidance
4	(a)	(geostationary or synchronous	B1	Nuctions tight on successing to show if the
			The term geostationary or synchronous to be included and spelled correctly to gain the B1 mark		must use tick or cross on Scoris to show if the mark is awarded
		(ii)	So that they stay: above the same point (at all times)	B1	Allow: travel at same (angular) speed / period and
			at same point in the sky		same direction as the Earth
		(iii)	<u>Dish</u> can be fixed to point in one (specific) direction/ <u>Dish</u> does not have to track the satellite (across the sky)	B1	Allow: Receiver / aerial for dish
		(iv)	Select from data sheet $T^2 = (4\pi^2/GM)r^3$		Allow : Full credit if candidate assumes $r = 4 \times 10^7$
			$r^3 = T^2 \left(\frac{GM}{4\pi^2} \right)$	C1	and shows T is approx 1 day.
			$r^{3} = (8.64 \times 10^{4})^{2} (6.67 \times 10^{-11} \times 6.0 \times 10^{24} / 4\pi^{2})$ any subject (= 7.56 X 10 ²²)	C1	$1 \text{ day} = 8.64 \times 10^4 \text{ s}$
					$G = 6.67 \times 10^{-11} N m^2 kg^{-2}$
			$r = 4.2 \times 10^7$ (m)	A1	
			$r \approx 4 \times 10^7$ (m)	A0	Mark for radius can only be awarded if suitable working is shown
	(b)	(i)	The cube of the planets distance (from the Sun) divided by the square of the	B1	Allow: radius for distance.,
			(orbital) period is the same (for all planets) (WTTE)		Allow: $T^2 \propto r^3$ or r^3 / T^2 = constant provided T and r are <u>identified</u>
		(ii)	$ratio^3 = \left(\frac{27.3}{27.3}\right)^2$	01	
					Moon from Earth's centre 3.8 x 10 ⁸ (m)
			ratio = $(27.3)^{2/3}$		
			ratio = 9.1	A1	Note : Full credit for 4 x 10 ⁷ (m) used from (a)(iv)
			Total	9	

Question	Expected Answers	Marks	Additional guidance
5(a)(i)	resultant OR net OR overall force acts (on object) perpendicular to the	B1	Ignore any reference to
	velocity OR towards the centre of the circle		"centripetal force"
(a)(ii)	velocity OR direction is always changing	B1	Allow a (resultant) force is acting
	acceleration is in direction of force OR is towards the centre/perp. to	B1	(hence there is an acceleration))
	velocity		
(b)	centripetal force OR $mv^2/r = GMm/r^2$ OR $v^2/r = GM/r^2$	C1	
	$v^2 = GM/r \Rightarrow r = GM/v^2$	C1	
	$r = 6.67 \times 10^{-11} \times 6 \times 10^{24} / 3700^2$	C1	
	r = 2.92 x 10 ⁷ m	A1	
(c)(i)	Any mass ejected in the same direction as the satellite (WTTE)	B1	Idea of rocket motor pushing
			against direction of motion of
			satellite.
(c)(ii)	$v^2r = constant OR v^2 = GM/r OR v = \sqrt{(6.67x10^{-11}x6 \times 10^{24})/2x10^7}$	C1	
	new v = $\sqrt{(3700^2 \text{ x} 2.94/2)} = 4500 \text{ m s}^{-1}$ (4473)	A1	
	Total	10	