1	(a)	Write a word equation which states Newton's law of gravitation.
		[1]
		[1]
	(b)	A planet of mass m moves in a circular orbit of radius r about a star of mass M . The planet has an orbital period T .
		Use your knowledge of circular motion and Newton's law of gravitation to derive Kepler's third law.

(c) The star HD10180 in the constellation Hydrus is notable for its large planetary system. The period T and the mean orbital radius r for HD10180's planets have been deduced from recent observations. Fig. 4.1 has been constructed using these data.

Fig. 4.1

(i)	State what features of Fig. 4.1 support the view that Kepler's third law may be applied to this system.
	[1]

(ii)	Use Fig. 4.1 to determine the mass of the star HD10180.
	mass = kg [3]
	ass

		[1]
(b)	Ber The	science fiction movie, a spaceship approaches a planet called Benzar. szar has a period of rotation of 1.2 × 10 ⁵ s. captain of the spaceship orders the crew to "enter a stationary orbit over the South Pole Benzar".
	(i)	Use your knowledge of physics to explain why it is impossible to follow these orders.
		[2]
	(ii)	Benzar has mass 8.9×10^{25} kg. Calculate the radius of the possible stationary orbit for a spaceship circling Benzar.
		radius = m [3]

[Total: 6]

3 (a) Fig. 2.1 shows the Earth in space.

Fig. 2.1

- (i) Draw lines on Fig. 2.1 to show the shape and direction of the gravitational field of the Earth. [1]
- (ii) The gravitational field strength, *g*, is uniform close to the Earth's surface. Describe the pattern of gravitational field lines close to the surface of the Earth.

- **(b)** The planet Saturn has mass 5.7×10^{26} kg and radius 6.0×10^7 m.
 - (i) Calculate the gravitational field strength $g_{\rm s}$ at Saturn's surface.

 $g_{\rm s} =$ N kg⁻¹ [2]

(ii)	2.3	urn's second-largest × 10 ²¹ kg. culate for Rhea	moon,	Rhea,	has	orbital	radius	5.3	×	10 ⁸ m	and	mass
	1	its orbital speed v										
	2	its kinetic energy.			V	=					m	s ⁻¹ [3]
			kii	netic en	ergy :	=						J [1] otal: 9]

(a)	(i)	State Newton's law of gravitation.
		[2]
	(ii)	Define gravitational field strength, g.
		[1]
(b)		n, a moon of Saturn, has a circular orbit of radius 1.2×10^6 km. The orbital period of Titar 6 Earth days.
	(i)	Calculate the speed of Titan in its orbit.
		speed = m s ⁻¹ [2]
	(ii)	Show that the mass of Saturn is about 5×10^{26} kg.
		[3]
(c)		ea is another moon of Saturn with a smaller orbital radius than Titan. ermine the ratio
	20.	orbital period $\frac{T_R}{T_R}$ of Rhea orbital period $\frac{T_R}{T_R}$ of Titan in terms of their orbital radii $\frac{T_R}{T_R}$, and $\frac{T_R}{T_R}$.
		ratio – [2]
	(b)	(ii) (b) Tita is 1 (i) (ii)

[Total: 10]

b) The table sh Isaac Newto		that was known to physicists at the t
oosition	distance <i>r</i> from centre of the Earth/km	gravitational field strength g due to the Earth/N kg ⁻¹
surface of Earth	6.4 × 10 ³	9.8
Moon's orbit	3.8×10^5	2.7 × 10 ⁻³
voiny tri	is relationship	
		× 10 ²⁴ kg

density = \ldots kg m⁻³ [2]