| 1 | (a) | Write a word equation which states Newton's law of gravitation. | |---|-----|--| | | | | | | | | | | | [1] | | | | [1] | | | (b) | A planet of mass m moves in a circular orbit of radius r about a star of mass M . The planet has an orbital period T . | | | | Use your knowledge of circular motion and Newton's law of gravitation to derive Kepler's third law. | (c) The star HD10180 in the constellation Hydrus is notable for its large planetary system. The period T and the mean orbital radius r for HD10180's planets have been deduced from recent observations. Fig. 4.1 has been constructed using these data. Fig. 4.1 | (i) | State what features of Fig. 4.1 support the view that Kepler's third law may be applied to this system. | |-----|---| | | | | | | | | [1] | | (ii) | Use Fig. 4.1 to determine the mass of the star HD10180. | |------|---| mass = kg [3] | | | ass | [1] | |-----|------------|--| | (b) | Ber
The | science fiction movie, a spaceship approaches a planet called Benzar. szar has a period of rotation of 1.2 × 10 ⁵ s. captain of the spaceship orders the crew to "enter a stationary orbit over the South Pole Benzar". | | | (i) | Use your knowledge of physics to explain why it is impossible to follow these orders. | | | | | | | | | | | | | | | | [2] | | | (ii) | Benzar has mass 8.9×10^{25} kg. Calculate the radius of the possible stationary orbit for a spaceship circling Benzar. | radius = m [3] | [Total: 6] 3 (a) Fig. 2.1 shows the Earth in space. Fig. 2.1 - (i) Draw lines on Fig. 2.1 to show the shape and direction of the gravitational field of the Earth. [1] - (ii) The gravitational field strength, *g*, is uniform close to the Earth's surface. Describe the pattern of gravitational field lines close to the surface of the Earth. - **(b)** The planet Saturn has mass 5.7×10^{26} kg and radius 6.0×10^7 m. - (i) Calculate the gravitational field strength $g_{\rm s}$ at Saturn's surface. $g_{\rm s} =$ N kg⁻¹ [2] | (ii) | 2.3 | urn's second-largest
× 10 ²¹ kg.
culate for Rhea | moon, | Rhea, | has | orbital | radius | 5.3 | × | 10 ⁸ m | and | mass | |------|-----|---|-------|----------|--------|---------|--------|-----|---|-------------------|-----|---------------------| | | 1 | its orbital speed v | | | | | | | | | | | | | 2 | its kinetic energy. | | | V | = | | | | | m | s ⁻¹ [3] | | | | | kii | netic en | ergy : | = | | | | | | J [1]
otal: 9] | | (a) | (i) | State Newton's law of gravitation. | |-----|------|--| | | | [2] | | | (ii) | Define gravitational field strength, g. | | | | [1] | | (b) | | n, a moon of Saturn, has a circular orbit of radius 1.2×10^6 km. The orbital period of Titar 6 Earth days. | | | (i) | Calculate the speed of Titan in its orbit. | | | | | | | | speed = m s ⁻¹ [2] | | | (ii) | Show that the mass of Saturn is about 5×10^{26} kg. | | | | | | | | [3] | | (c) | | ea is another moon of Saturn with a smaller orbital radius than Titan. ermine the ratio | | | 20. | orbital period $\frac{T_R}{T_R}$ of Rhea orbital period $\frac{T_R}{T_R}$ of Titan in terms of their orbital radii $\frac{T_R}{T_R}$, and $\frac{T_R}{T_R}$. | | | | | | | | | | | | ratio – [2] | | | (b) | (ii) (b) Tita is 1 (i) (ii) | [Total: 10] | b) The table sh
Isaac Newto | | that was known to physicists at the t | |---------------------------------------|---|--| | oosition | distance <i>r</i> from centre of the Earth/km | gravitational field strength g due to the Earth/N kg ⁻¹ | | surface of Earth | 6.4 × 10 ³ | 9.8 | | Moon's orbit | 3.8×10^5 | 2.7 × 10 ⁻³ | | voiny tri | is relationship | | | | | | | | | × 10 ²⁴ kg | density = \ldots kg m⁻³ [2]