Question		on	n Answer N		Guidance	
1	(a)		(gravitational) force ∞ <u>[mass 1] [mass 2]</u> . [separation (of masses)]²	B1	Allow: equation in symbols if symbols are defined Allow: equality Not radius	
	(b)		Use of $F = \frac{GMm}{R^2}$ AND $F = \frac{mv^2}{R}$	B1	Ignore signs Allow: equation with cancelling shown	
			r = T	B1		
			$\frac{GM}{R^2} = \frac{1}{R} \left(\frac{(2\pi R)}{T} \right)^2$	B1	This mark is for some evidence of substitution and manipulation	
			$R^3 = \frac{GM}{4\pi^2} T^2 OR R^3 \propto T^2$	A1	Allow: subject must be either R^3 or T^2	
					Allow: Max 1 mark for bald statement of $R^3 = \frac{GM}{4\pi^2}T^2$ without proof	
	(c)	(i)	Graph is a straight line / has constant gradient and passes <u>through the</u> <u>origin</u>	B1		
		(ii)	gradient of graph = $\frac{GM}{4\pi^2} = \frac{15 \times 10^{34}}{4.5 \times 10^{16}} = (3.3 \times 10^{18})$	C1	Allow: ± half small square on reading off points on line Note 2 possible POT error in this equation would give max 1 out 3 with FT.	
			$M = \frac{4\pi \times 5.3 \times 10}{6.67 \times 10^{-11}}$	C1	Allow: use of a point read from straight line substituted into Kepler's equation	
			$M = 1.97 \times 10^{30}$ (kg)	Δ1	Allow: FT from their gradient value.	
					2.0 x 10^{n} where n \neq 30 scores max 2 out of 3 marks	
			Total	9		

Question		۱	Answer	Marks	Guidance
2	(a)		Spaceship is (always vertically) above the same point on (the surface of the Earth/ planet) (AW)	B1	Allow: Spaceship must orbit the equator with a period of 24 h/ 1 day <u>and</u> must have the same direction of rotation as Earth / planet (AW) Not : same point in sky
	(b)	(i)	Centre of spaceship's orbit must coincide with the centre of mass of Benzar OR orbit must be equatorial (AW)	B1	S Pole is on axis of rotation (radius of orbit is zero)
			Velocity of spaceship must be parallel to the velocity of a point on the surface of Benzar. OR Spaceship must orbit in the same direction as Benzar rotates (AW)	B1	Spacecraft must be stationary /not orbiting planet / spinning on its axis OR Spacecraft will only pass over S Pole once in each orbit
		(ii)	$R^3 = \frac{GT^2M}{4\pi^2}$	C1	Must have R or R³ as subject
			$R^{3} = \frac{6.67 \times 10^{-11} \times (1.2 \times 10^{5})^{2} \times 8.9 \times 10^{25}}{4\pi^{2}}$	C1	Mark is for substitution
			$R = 1.3 \times 10^8$ (m)	A1	Answer to 3 sf is 1.29 x 10 ⁸ (m)
			Total	6	

Question		ion	Answer	Marks	Guidance
3	(a)	(i)	Diagram showing at least 4 radial lines outside Earth, appearing to meet at centre of Earth (as judged by eye – in a square containing letters a and r of label) AND at least 4 arrows directed towards the Earth	B1	Do not award this mark if any arrow is in wrong direction. Allow : line(s) to continue inside the Earth
		(ii)	 Any two from the following: Field lines are parallel to each other Field lines are equally/evenly/uniformly/constantly spaced (AW) Field lines are perpendicular / vertical / right angles (to surface of the Earth) 	B1 B1	Note: vertical, parallel, perpendicular /right angles wherever used to be spelled correctly
	(b)	(i)	$g = \frac{GM}{R^2}$ $g = \frac{6.67 \times 10^{-11} \times 5.7 \times 10^{26}}{(6 \times 10^7)^2}$ $g = 11 (Nkg^{-1})$	C1 A1	Note: Mark is for substitution Answer is 10.6 (N kg ⁻¹) to 3 sf Ignore sign
		(ii)1	$\frac{mv^2}{r} = \frac{GMm}{r^2} \text{or} v^2 = \frac{GM}{r}$ $v^2 = \frac{6.67 \times 10^{-11} \times 5.7 \times 10^{26}}{5.3 \times 10^8} (= 7.17 \times 10^7)$ $v = 8.5 \times 10^3 (\text{m s}^{-1})$	C1 C1 A1	Allow $T^2 = \left(\frac{4\pi^2}{GM}\right)r^3$ and $v = \frac{2\pi r}{T}$ Expected value for $T = 3.93 \times 10^5$ s Note: Mark is for substitution Answer is 8470 (m s ⁻¹) to 3 sf Note: Using • mass of Rhea (2.3 × 10 ²¹) gives $v = 17$ (m s ⁻¹) • g from b(i) in $v = \sqrt{gr}$ gives $v = 7.5 \times 10^4$ [correct value of g at Rhea's orbit is 0.135 N kg ⁻¹] Both score max 1 mark for use of correct formula
		(ii)2	$E_{k} = \frac{1}{2} \times 2.3 \times 10^{21} \times 7.17 \times 10^{7}$ $E_{k} = 8.2 \times 10^{28} (J)$	B1	Possible ecf for <i>v</i> from (ii)1 Note: Using $v = 17$ gives $E_k = 3.3 \times 10^{23}$ (J) Using $v = 7.5 \times 10^4$ gives $E_k = 6.5 \times 10^{30}$ (J) Using b(ii)1 to 2st gives $E_k = 8.3 \times 10^{28}$ (J)
			Total	9	$\int \frac{d}{dt} = \frac{d}{dt$

Question		on	Answer	Marks	Guidance
4	(a)	(i)	Force between two (point) masses is proportional to the product of masses	B1	
			and inversely proportional to the square of the distance between them	B1	Not: radius
					Allow: $F = GMm/r^2$ B1
					All symbols defined B1
		(ii)	Force per (unit) mass	B1	Allow: $g = F/m$ with symbols defined
	(b)	(i)	$v = \frac{2\pi R}{T}$		
			$2\pi \times 1.2 \times 10^9$	C1	
			$V = \frac{16 \times 86400}{16 \times 86400}$		
			$v = 5.5 \times 10^3$ (ms ⁻¹)	A1	Note: Answer to 3 sf is 5.45 x 10 ³ Allow: 1 mark for 4.7 x 10 ⁸ not converting days to s
		(ii)	2 014		Allow. I mark for 5.5 hot converting kin to m
		(11)	$m_T \frac{v^2}{r} = \frac{GM_S m_T}{r^2}$	C1	Allow: alternative method using Kepler's third law
			$M_s = \frac{v^2 r}{G}$		
			$M_{s} = \frac{(5.45 \times 10^{3})^{2} \times 1.2 \times 10^{9}}{6.67 \times 10^{-11}}$	C1	Possible ECF from b(i) Note : An answer of 5.3 x 10^{26} (or 5.4 x 10^{26})
			$M = 5.3 \times 10^{26} \text{ (kg)}$	A1	without substitution shown scores 2 marks since this is a ' show' question.
					Note: Use of 5.5 x 10 ³ gives 5.4 x 10 ²⁶ (kg)
	(C)		Reference to $T^2 = (4\pi^2/GM) r^3$ OR $T^2 \propto r^3$	B1	······································
			$\frac{T_R}{T_T} = \sqrt{\frac{r_R^3}{r_T^3}} \text{OR} \frac{T_R}{T_T} = \left(\frac{r_R}{r_T}\right)^{\frac{3}{2}}$	B1	Not: $\left(\frac{T_R}{T_T}\right)^2 = \left(\frac{r_R}{r_T}\right)^3$
			Total	10	

5	Expected Answers	Marks	Additional guidance
(a)	Force per unit mass (at a point in a gravitational field).	B1	Accept $g = F/m$ if F and m are identified
(b)(i)	Recognition that inverse square law needs to be verified: e.g. $g \propto 1/r^2$	B1	Do not accept a bare $g = GM/r^2$ unless G and M are stated as constants or following calculations shows this.
	hence $gr^2 = \text{constant} \Rightarrow 9.8 \times 6400^2 = 4.0 \times 10^8 \text{ (or } 4 \times 10^{14} \text{)}$ AND 2.7 x 10 ⁻³ x (3.8 x 10 ⁵) ² = 3.9 x 10 ⁸ (or 3.9 x 10 ¹⁴) (n.b values in brackets correspond to radius in metres)	B1	They must use values in table and do both calculations for this mark Allow other valid approaches e.g. g ratio compared to $1/r^2$ ratio (3630 and
	Any appropriate comment consistent with the calculations	B1	3530) OR (2.75 x 10^{-4} , 2.84 x 10^{-4} ,)
(b)(ii)	$(mg = GmM / r^2 \Rightarrow M = gr^2 / G)$		(this formula is given on data sheet)
	$M = 9.81 \times (6.4 \times 10^{6})^{2} / 6.67 \times 10^{-11}$ $M = 6.024 \times 10^{24} \text{ kg}$	C1 A1	Correct substitution into formula Allow 6.018 x 10^{24} this is for $g = 9.8$ and allow any value between 6.0 x 10^{24} and 6.03 x 10^{24} but not 6x 10^{24}
			Also allow data for the moon to be used i.e $M_{\rm E} = 2.7 \times 10^{-3} \times 3.8 \times 10^{8} / 6.67 \times 10^{-11} = 5.846 \times 10^{24} \text{ kg} \approx 6 \times 10^{24} \text{ kg}$
(b)(iii)	volume = $(4/3)\pi r^3 = (4/3)\pi (6.4 \times 10^6)^3 (= 1.10 \times 10^{21} \text{ m}^3)$	C1	mark for correct substitution e.g. 6.4 x 10^6 (in m) used and not 6.4 x 3 (km)
	$\rho = M/V = 6.0 \times 10^{24} / 1.10 \times 10^{21} = 5500 (5464)(\text{kg m}^{-3})$	A1	allow ecf from b(ii) for cand's value of M but no ecf for wrong volume <u>formula</u>
			If $r = 6.4 \times 10^3$ is used V = 1.1 $\times 10^{12} \Rightarrow \rho = 5.5 \times 10^{12}$ and scores 1 mark
	Total	8	