Question			Answer	Marks	Guidance
1	(a)		```Kinetic energy is conserved (when molecule collides) / collision is elastic (so velocity after collision is \(-v\)) Momentum change \(=m v-[-m v]\) \(=2 m v\)```	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A0 } \end{aligned}$	Note: Kinetic and elastic, wherever used, to be spelled correctly Allow: $m[v-(-v)]$ or $-m v-m v$ Allow: A1 mark if M1 mark has been lost for incorrect spelling
	(b)		Increase in temperature causes an increase in velocity / speed (of molecules) Collisions are more frequent (AW) Greater (rate of) change in momentum (in each collision with the surface) Hence force increases	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \text { B1 } \\ & \\ & \text { A0 } \end{aligned}$	Note: No credit for references to pressure [NAQ]
	(c)	(i)	$\begin{aligned} & \frac{p_{2}}{T_{2}}=\frac{p_{1}}{T_{1}} \\ & p_{2}=\frac{2.2 \times 10^{5}}{(273+18)} \times(273+54) \\ & p_{2}=2.5 \times 10^{5} \quad \text { (Pa) } \end{aligned}$	C1 A1	Note: Mark is for substitution; any subject No marks if temperatures are not converted to kelvin Answer to 3 sf is $2.47 \times 10^{5}(\mathrm{~Pa})$
		(ii)	$\begin{aligned} & \text { Original area }=\frac{W}{p_{1}}=\frac{1200 \times 9.8}{2.2 \times 10^{5}} \quad\left(=5.35 \times 10^{-2}\right) \quad\left(\mathrm{m}^{2}\right) \\ & \text { Final area }=\frac{W}{p_{2}}=\frac{1200 \times 9.8}{2.47 \times 10^{5}} \quad\left(=4.77 \times 10^{-2}\right) \quad\left(\mathrm{m}^{2}\right) \\ & \text { Change in area }=(5.35-4.77) \times 10^{-2}=5.8 \times 10^{-3} \quad\left(\mathrm{~m}^{2}\right) \end{aligned}$	C1 C1 A1	Possible ecf from (c)(i) Allow: Full credit if 2 sf values are used eg $6.4 \times 10^{-3}\left(\mathrm{~m}^{2}\right)$ using $p_{2}=2.5 \times 10^{5}$
			Total	10	

Question			Answer		Marks	Guidance
2	(a)	(i)	For a fixed / constant mass of gas at constant temperature Pressure is inversely proportional to volume / pressure \times volume $=$ constant		$\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{~B} 1 \end{aligned}$	
		(ii)	Axes labelled p and $1 / V$ OR V and $1 / p$		B1	No ecf from a(i) Note: Only one tick
	(b)	(i)1	$\begin{aligned} & p V=n R T \\ & n=\frac{p V}{R T}=\frac{1.2 \times 10^{7} \times 0.05}{8.31 \times(273+21)} \\ & n=250 \end{aligned}$		C1 A1	Allow: use of $p V=N k T$ leading to $N=1.48 \times 10^{26} \quad \text { (C1) }$ and $n=\mathrm{N} / \mathrm{N}_{\mathrm{A}}$ giving $n=250$ (A1) Mark is for substitution; any subject. No credit if $21^{\circ} \mathrm{C}$ is used giving $n=3438$
		(i)2	$\begin{aligned} \text { mass } & =n \times 0.029=246 \times 0.029 \\ & =7.1 \mathrm{~kg} \end{aligned}$	$\begin{aligned} \text { mass } & =n \times 0.029=250 \times 0.029 \\ & =7.3 \mathrm{~kg} \end{aligned}$	A1	Possible ecf from (b)(i)1 Allow ecf if $n=3438$ leads to mass $=99.7 \mathrm{~kg}$

Question			Answer	Marks	Guidance
3	(a)	(i)	Energy required to raise the temperature of a unit mass of a substance by unit temperature rise.	B1	Allow: $c=\frac{Q}{m \Delta \theta}$ with all symbols defined.
		(ii)	LH of fusion is energy needed to change (a substance) from solid to liquid LH of vaporisation is energy needed to change (a substance) from liquid to gas/vapour	B1	Allow: a single reference to energy (either statement acceptable)
	(b)	(i)	A to B: KE of molecules increases AND PE of molecules (small) increases B to C: KE of molecules remain constant AND PE of molecules increases	$\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{~B} 1 \\ & \hline \end{aligned}$	
		(ii)	$C_{\text {solid }}$ is less than $c_{\text {liquid }}$ Correct reason Eg gradient for solid is greater than gradient for liquid AND gradient is inversely proportional to specific heat capacity (AW\}	$\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{~B} 1 \end{aligned}$	
	(c)	(i)	```In one second volume flowing through \(=\left(3.6 \times 10^{-3} / 60\right)=6.0 \times 10^{-5}\) mass flowing through \(=6.0 \times 10^{-5} \times 1000=\left(6.0 \times 10^{-2}\right)\) Energy gained by water \(E=m c \Delta \theta=0.060 \times 4200 \times(36.7-17.4)\) (= 4864) Power of heater \(=\mathrm{E} / \mathrm{t}=4864 / 1\) Power of heater \(=4.9 \times 10^{3}\) \(\approx 5 \mathrm{~kW}\)```	C1 C1 C1 A1 A0	Alternative In one minute volume flowing through $=3.6 \times 10^{-3}$ mass flowing through $=3.6$ Energy gained $\begin{align*} & E=m c \Delta \theta=3.6 \times 4200 \times(36.7-17.4) \tag{C1}\\ &\left(=2.92 \times 10^{5} \mathrm{~J}\right) \\ & \text { Power } \quad=\mathrm{E} / \mathrm{t}=2.92 \times 10^{5} / 60 \tag{C1}\\ & \text { Power of heater }=4.9 \times 10^{3} \tag{A1}\\ & \approx 5 \mathrm{~kW} \tag{A0} \end{align*}$
		(ii)	EITHER rate of flow of water changes because water pressure changes OR Inlet temperature changes because ambient temperature changes	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	
			Total	12	

Question			Answer	Marks	Guidance
4	(a)		Gas molecules move in random / erratic / haphazard motion (AW)	B1	Use tick or cross on Scoris random / erratic / haphazard must be spelled correctly to score the mark.
	(b)	(i)	constant temperature	B1	
		(ii)	$\begin{aligned} & P_{1} V_{1}=P_{2} V_{2} \\ & 350 \times 120 \times(\mathrm{A})=P_{2} \times 55 \times(\mathrm{A}) \\ & P_{2}=\frac{350 \times 120}{55} \\ & \quad=760(\mathrm{kPa}) \end{aligned}$	C1 A1	Note: Answer to 3 sf is $764(\mathrm{kPa})$ Note: $7.6 \times 10^{5}(\mathrm{kPa})$ scores 1 mark
		(iii)	When a molecule collides with the (moving) piston it rebounds with higher speed / ke / momentum (Mean) kinetic energy of molecules is proportional / \propto to (Kelvin) temperature	B1 B1	Must refer to collisions with piston or rebounds from piston not collisions within gas molecules. Allow: $E_{k}=3 k T / 2$ without definition of terms.
			Total	6	

5	Expected Answers	Mark	Additional guidance
(a)(i)	Latent heat of fusion.	B1	QWC fusion spelled correctly ignore any reference to specific.
(a)(ii)	Latent heat of vaporisation.	B1	QWC Vaporisation spelled correctly. Accept vaporization but not vapourisation.
(b)(i)	$\begin{aligned} \mathrm{E} & =m c \Delta \theta \text { used correctly e.g. } 0.8 \times 4200 \times 82 \\ & =2.8 \times 10^{5}(\mathrm{~J})(275520) \end{aligned}$	$\begin{aligned} & \text { C1 } \\ & \text { A1 } \end{aligned}$	$0.8 \times 4200 \times(82+273)$ scores zero
(b)(ii)	Any two from: Some heat/energy used to heat kettle Some heat/energy lost to surroundings/air/environment. Some heat/energy used to boil water before kettle switches off	$\begin{aligned} & \hline \text { B1 } \\ & \text { B1 } \end{aligned}$	Do not allow "some heat lost" i.e. they must state where/how Do not allow "kettle if not 100\% efficient". Do not allow "energy lost as sound/light"
(b)(iii)	$1 \mathrm{kWh}=1000 \times 3600=3.6 \times 10^{6} \mathrm{~J}$ Wastage per year $=\left(2.8 \times 10^{5} \times 365\right) / 3.6 \times 10^{6}=28 \mathrm{kWh}$ (27.9)	$\begin{aligned} & \text { C1 } \\ & \text { A1 } \end{aligned}$	Allow 1 mark for energy lost per year = 1.02×10^{8} Joules Allow ecf from (b)(i)
	Total	8	

