	Overstien Marke Ovidence						
Q	uesti	on	Answer	Marks	Guidance		
1	(a)		Kinetic energy is conserved (when molecule collides) / collision is elastic (so velocity after collision is $-v$) Momentum change = $mv - [-mv]$ = $2mv$	M1 A1 A0	Note: Kinetic and elastic , wherever used, to be spelled correctly Allow : $m[v-(-v)]$ or $-mv - mv$ Allow : A1 mark if M1 mark has been lost for incorrect spelling		
	(b)		Increase in temperature causes an increase in velocity / speed (of molecules) Collisions are more frequent (AW) Greater (rate of) change in momentum (in each collision with the surface) Hence force increases	B1 B1 B1 A0	Note: No credit for references to pressure [NAQ]		
	(c)	(i)	$\frac{p_2}{T_2} = \frac{p_1}{T_1}$ $p_2 = \frac{2.2 \times 10^5}{(273 + 18)} \times (273 + 54)$ $p_2 = 2.5 \times 10^5 (Pa)$	C1 A1	Note: Mark is for substitution; any subject No marks if temperatures are not converted to kelvin Answer to 3 sf is 2.47×10^5 (Pa)		
		(ii)	Original area $= \frac{W}{p_1} = \frac{1200 \times 9.8}{2.2 \times 10^5}$ (= 5.35×10 ⁻²) (m ²) Final area $= \frac{W}{p_2} = \frac{1200 \times 9.8}{2.47 \times 10^5}$ (= 4.77×10 ⁻²) (m ²) Change in area $= (5.35 - 4.77) \times 10^{-2} = 5.8 \times 10^{-3}$ (m ²)	C1 C1 A1	Possible ecf from (c)(i) Allow: Full credit if 2 sf values are used eg 6.4×10^3 (m ²) using $p_2 = 2.5 \times 10^5$		
			Total	10			

Question		ion	Α	nswer	Marks	Guidance
2	(a)	(i)	For a fixed / constant mass of gas at con	stant temperature	B1	
			Pressure is inversely proportional to volu	me / pressure x volume = constant	B1	
		(ii)	Axes labelled p and $1/V$ OR V and $1/p$		B1	No ecf from a(i) Note: Only one tick
	(b)	(i)1	$pV = nRT$ $n = \frac{pV}{RT} = \frac{1.2 \times 10^7 \times 0.05}{8.31 \times (273 + 21)}$ $n = 250$		C1 A1	Allow: use of $pV = NkT$ leading to $N = 1.48 \times 10^{26}$ (C1) and $n = N/N_A$ giving $n = 250$ (A1) Mark is for substitution; any subject. No credit if 21°C is used giving $n = 3438$
		(i)2	mass = <i>n</i> x 0.029 = 246 x 0.029 = 7.1 kg	mass = $n \ge 0.029 = 250 \ge 0.029$ = 7.3 kg	A1	Possible ecf from (b)(i)1 Allow ecf if $n = 3438$ leads to mass = 99.7 kg

Question	Answer		Guidance
2 (b) (ii)	$n_{air \ added} = \frac{pV}{RT} = \frac{1.0 \times 10^5 \times 1.5}{8.31 \times (273 + 21)}$ $n_{air \ added} = 61.4$	C1	Possible ecf from (b)(i)1 or 2 Allow follow through for incorrect <i>n_{air added}</i>
	$n_{total} = n_{initial} + n_{air added} = 246 + 61.4 (= 307)$	C1	value Using $n = 250$ from b(i)1 leads to $n_{total} = 250 + 61.4$ (= 311)
	$p_{final} = n_{total} \left(\frac{RT}{V}\right) = 307 \times \left(\frac{8.31 \times (273 + 21)}{0.050}\right)$ $p_{final} = 1.5 \times 10^7 (Pa)$	C1 A1	Use of $T = 21^{\circ}$ C or $V = 1.55$ is wrong physics so can not score last two marks ALTERNATIVE METHOD Calculates pressure of air pumped in if it
			were to occupy a volume equal to cylinder $p_2 = \frac{1 \times 10^5 \times 1.5}{0.05}$ (C1) $p_2 = 3.0 \times 10^6$ (C1) When added to air already in cylinder
			$p_{final} = p_{original} + p_2$ $p_{final} = 1.2 \times 10^7 + 3.0 \times 10^6$ (C1) $p_{final} = 1.5 \times 10^7$ (Pa) (A1)
			SPECIAL CASES Using alternative method but with final volume taken as $1.5 \text{ m}^3 p_2 = 4.0 \times 10^5$ (Pa) and final pressure is 5.0×10^5 (Pa) Scores 2 marks . No credit if final volume taken as 1.55 m^3
	Total	10	

Question		on	Answer		Guidance	
3	(a)	(i)	Energy required to raise the temperature of a unit mass of a substance by unit temperature rise.	B1	Allow: $c = \frac{Q}{m\Delta\theta}$ with all symbols defined.	
		(ii)	LH of fusion is energy needed to change (a substance) from <u>solid to liquid</u> LH of vaporisation is energy needed to change (a substance) from <u>liquid to</u> <u>gas/vapour</u>	B1	Allow: a single reference to energy (either statement acceptable)	
	(b)	(i)	A to B: KE of molecules increases AND PE of molecules (small) increases B to C: KE of molecules remain constant AND PE of molecules increases	B1 B1		
		(ii)	C _{solid} is less than C _{liquid}	B1		
			Correct reason Eg gradient for solid is greater than gradient for liquid AND gradient is inversely proportional to specific heat capacity (AW}	B1		
	(c)	(i)	$\frac{\text{In one second}}{\text{volume flowing through}} = (3.6 \times 10^{-3} / 60) = 6.0 \times 10^{-5} \\ \text{mass flowing through} = 6.0 \times 10^{-5} \times 1000 = (6.0 \times 10^{-2}) \\ \text{Energy gained by water } E = mc \Delta \theta = 0.060 \times 4200 \times (36.7 - 17.4) \\ (= 4864) \\ \text{Power of heater} = E / t = 4864 / 1 \\ \text{Power of heater} = 4.9 \times 10^{3} \\ \approx 5 \text{ kW} \\ \end{array}$	C1 C1 C1 A1 A0	Alternative In one minute volume flowing through = 3.6×10^{-3} mass flowing through = 3.6 (C1) Energy gained $E = mc \Delta \theta = 3.6 \times 4200 \times (36.7 - 17.4)$ (C1) $(= 2.92 \times 10^5 \text{ J})$ Power = $E / t = 2.92 \times 10^5 / 60$ (C1) Power of heater = 4.9×10^3 (A1) $\approx 5 \text{ kW}$ (A0)	
		(ii)	EITHER rate of flow of water changes because water pressure changes OR Inlet temperature changes because ambient temperature changes	M1 A1		
			Total	12		

Q	Question		Answer		Guidance
4	(a)		Gas molecules move in random / erratic / haphazard motion (AW) :	B1	Use tick or cross on Scoris random / erratic / haphazard must be spelled correctly to score the mark.
	(b)	(i)	constant temperature	B1	
		(ii)	$P_1 V_1 = P_2 V_2$		
			$350 \times 120 \times (A) = P_2 \times 55 \times (A)$	C1	
			$P_2 = \frac{350 \times 120}{55}$		
			= 760 (kPa)	A1	Note: Answer to 3 sf is 764 (kPa) Note : 7.6 x 10 ⁵ (kPa) scores 1 mark
		(iii)	When a molecule collides with the (moving) piston it rebounds with higher speed / ke / momentum	B1	Must refer to collisions with piston or rebounds from piston not collisions within gas molecules.
			(Mean) kinetic energy of molecules is proportional / $\underline{\infty}$ to (Kelvin) temperature	B1	Allow: $E_k = 3kT/2$ without definition of terms.
			Total	6	

5	Expected Answers	Mark	Additional guidance
(a)(i)	Latent heat of <u>fusion</u> .	B1	QWC fusion spelled correctly ignore any reference to specific.
(a)(ii)	Latent heat of vaporisation.	B1	QWC Vaporisation spelled correctly. Accept vaporization but not vapourisation.
(b)(i)	$E = mc\Delta\theta \text{ used correctly e.g. } 0.8 \times 4200 \times 82$ = 2.8 × 10 ^{5 (} J) (275520)	C1 A1	0.8 x 4200 x (82+273) scores zero
(b)(ii)	Any two from: Some heat/energy used to heat kettle Some heat/energy lost to surroundings/air/environment. Some heat/energy used to boil water before kettle switches off	B1 B1	Do not allow "some heat lost" i.e. they must state where/how Do not allow "kettle if not 100% efficient". Do not allow "energy lost as sound/light"
(b)(iii)	1 kWh = 1000 x 3600 = 3.6×10^6 J Wastage per year = ($2.8 \times 10^5 \times 365$) / 3.6×10^6 = 28 kWh (27.9)	C1 A1	Allow 1 mark for energy lost per year = 1.02 x 10 ⁸ <u>Joules</u> Allow ecf from (b)(i)
	T	otal 8	