Question		n	Answer	Marks	arks Guidance	
1	(a)		$\boldsymbol{E} = \frac{6.63 \times 10^{-34} \times 3.0 \times 10^8}{1.1 \times 10^{-6}}$	M1	Values must be substituted	
			$E = 1.8 \times 10^{-19}$ (J)	A0	Answer to 3sf is 1.81 x 10 ⁻¹⁹ (J)	
	(b)		$m = \rho V = 8.1 \times 10^{-12} \times 4.5 \times 10^3 = (3.645 \times 10^{-8})$	C1		
			Thermalenergy gained = $(mc \ \Delta \theta) = 3.645 \times 10^{-8} \times 520 \times [1700 - 20]$ (= 0.0318)	C1	Allow: of from (a) and made of titanium	
			$1.81 \times 10^{-19} \times 6.3 \times 10^{19} \times t = 0.0318$		Allow. echion (a) and mass of idamium	
			$t = 2.8 \times 10^{-3}$ (s)	A1		
	(c)		Thermal energy is conducted / transferred to the rest of titanium/metal	B1	Not: heat lost to surroundings	
			Photons are reflected / scattered from / not absorbed the titanium surface	B1		
	(d)		(Photon) energy is converted into potential energy (rather than kinetic energy) OR		Allow: energy is used to overcome the forces between atoms / breakdown the crystal structure of titanium (rather than increase	
			Energy is used to change solid to liquid / phase (rather than increase kinetic		kinetic energy)	
			energy) OR	B1		
			Energy provides (specific) latent heat of fusion (rather than increase kinetic energy)			
			Total	7		

Question		on	Answer	Marks	Guidance	
2	(a)		Idea of extrapolating graph back (to negative temperatures) <u>Volume is zero</u> at absolute zero / <u>negative volumes</u> are impossible	B1 B1	Can be shown on diagram Allow 'negligible <u>volume</u> ' rather than zero and use of -273 °C / 0 K	
	(b)	(i)	(Internal energy of a system) is the sum of the <u>random</u> (distribution of) kinetic and potential energies of (all) atoms/molecules (in the system)	B1	Allow :particles	
		(ii)	Any two from Comparison of kinetic energies in gas and liquid phases linked to temperature Potential energy of gas phase is greater than PE of liquid phase / energy must be supplied to change liquid into gas phase	B1 B1	Allow: potential energy of gas phase is ('close' to) zero	
	(c)	(i)	$p = \frac{nRT}{V} = \frac{45 \times 8.31 \times 293}{1.2 \times 10^{-2}}$ p = 9.1×10 ⁶ (Pa)	C1 A1	No credit If temperature is not converted to kelvin	
		(ii)	$n_{He} = \frac{5.0 \times 10^7 \times 2.0 \times 10^{-3}}{8.31 \times 293} = 41$ $p_{trimix} = \frac{[45+41] \times 8.31 \times 293}{[1.2 \times 10^{-2} + 2.0 \times 10^{-3}]}$ $p_{trimix} = 1.5 \times 10^7 (Pa)$	C1 C1 A1	Allow: ECF if temperature is used in °C only if penalised in (i) Otherwise max mark allowed is 1 out of 3 for $n = 602$ mol Allow: use of partial pressures	
		(iii)	Internal / kinetic energy of molecules decreases (as temperature falls) Hence pressure would decrease	M1 A0	Allow: $p \propto T$ if (n and) <u>V constant</u>	
			Total	11		

Question	Answer	Marks	Guidance		
3	 Diagram showing Oil in (insulated) container Electrical heater <u>fully immersed in oil</u> <u>Thermometer / Temperature sensor</u> Electrical circuit Ammeter in series , voltmeter in parallel with heater / joulemeter in parallel with heater Power supply /+ & - signs marked on wires 	B1 B1	 Not: oven or hotplate Allow: 'Fully immersed' seen in the body of text Thermometer /Temperature sensor must be spelled correctly on diagram All elements should be shown to score these diagram marks. Ignore appropriate additional items Connections to heater should be clear. 		
	 Measurements Measure mass of oil /use known mass of oil, Measure change in temperature / initial and final temperatures Measure current, pd and (fixed) time / energy Calculation Input Energy = E = Pt = VIt and c = E/mΔβ 	B1 B1	Must have all elements. Allow: Use of symbols Allow: Take energy reading from joulemeter Not: use given power rating of heater Input energy must be consistent with equipment used. c must be the subject of the equation and temperature rise ($\Delta \mathcal{B}$ or $\mathcal{B}_2 - \mathcal{B}_1$) must be clear. Allow: Draw graph of temperature against time		
	 Uncertainties Any two together with minimising action. Heat losses (make <i>A</i>𝔅 uncertain) - minimise by using initial 𝔅 below and final 𝔅 <u>same amount</u> above, room temperature Temperature varies throughout oil - minimise by stirring before taking temperature readings Some energy is required to raise temperature of the container / heater (etc) - allow by including in calculation. Temperature will continue to rise after heater is turned off – find max temperature. 	2 x B1	c = VI / [gradient x mass] These points may be scored in the description of method. No credit for other uncertainties including heat lost to surroundings		
	Total	6			

Question		n	Answer	Marks	Guidance	
4	(a)	(i)	Molecules (of the liquid) are in random / haphazard motion (AW)	B1	Not zig-zag	
			Molecules (of liquid) are smaller than pollen grains	B1	must compare to pollen grains Ignore mass is smaller	
		(ii)	Increase the temperature (of the liquid)	B1	Allow: Heating the liquid	
	(b)	(i)	 Any three from: Collisions with the <u>walls/container/sides</u> are elastic force between molecules is negligible / zero <u>except</u> <u>during collisions</u> Volume of the <u>molecules</u> is negligible <u>compared</u> to the volume of the container (AW) Time within a collision is negligible <u>compared to time</u> <u>between collisions</u> 	(B1) (B1) (B1) (B1) B3	Collision/collides must be spelled correctly to score the mark Ignore collisions between gas molecules Must refer to comparison to score either of the last two points. Ignore references to incomplete assumptions and assumption not given in expected answer.	
		(ii)	Momentum of the molecule changes when it collides with the	B1	Allow: There is an impulse on molecule when it collides with	
		(")	<u>wall</u> (AW) Force on the <u>molecule</u> is rate of change of momentum (by N 2nd Law)	B1	wall.	
			(By N 3^{rd} Law) Force on <u>wall</u> is equal to and opposite to the force on the <u>molecule</u>	B1		
			pressure = <u>sum of forces (due to all molecules)</u> Area of wall	B1		

Question	Answer	Marks	Guidance		
(C)	$ \rho = \frac{m}{V} (\text{any subject}) $ $ n = \frac{m}{M} (\text{any subject}) $	M1 M1	Allow: $ \rho = \frac{m}{V} $ (M1) A clear statement of "n = 1 then m = M" (M1) Note: Both M marks must be scored and the method must be clear to score the A1 mark.		
	$pV = nRT$ $p\binom{m}{\rho} = \binom{m}{M}RT$ $p = \frac{\rho RT}{M}$	A1 A0	$pV = nRT$ $p\binom{M}{\rho} = RT$ $p = \frac{\rho RT}{M}$ (A1) (A0)		
(d) (i)	Use of $p \propto \rho T$ or $\frac{p_T}{p_B} = \frac{\rho_T T_T}{\rho_B T_B}$ $0.35 = \frac{\rho_T \times 240}{1.3 \times 293}$ $\rho_T = \frac{0.35 \times 1.3 \times 293}{240}$ $\rho_T = 0.56 \text{ (kg m}^{-3}\text{)}$	C1 C1 A1	Allow: any subject Allow: any subject Allow: Max 1 mark if temperatures are not converted to kelvin. Expect density to be – 0.276 kg m ⁻³ Answer to 3 sf is 0.555 (kg m ⁻³)		
(ii)	Correct use of $N \propto \frac{p}{T}$ or $\frac{N_T}{N_B} = \frac{p_T T_B}{p_B T_T}$ $\frac{N_T}{N_B} = \frac{0.35 \times 293}{240}$ $\frac{N_T}{N_B} = 0.43$ Total	C1 A1 18	Do not penalise use of °C if already penalised in (i) Allow: Alternative approach using $\frac{N_T}{N_B} = \frac{\rho_T}{\rho_B}$ with possible ecf from (i) Answer to 3 sf is 0.427		

_

_

C	Question		Answer		Guidance
5	(a)		Mass of air = 4.5 x 4 x 2.4 x 1.3 (= 56.2)	B1	
			$Q = mc\Delta\theta = 56.2 \times 990 \times (21 - 12)$ $Q = 5.0 \times 10^5 \text{ (J)}$	C1 A1	Allow: follow through (FT) for mass of air Note: Max 1 mark out of 3 if temperature rise is given as 282 K.
	(b)	(i)	$t = \frac{Q}{P} = \frac{5.0 \times 10^5}{2300}$	C1	Possible ecf from (a)
			t = 220 (s)	A1	Answer is 217 (s) or 218 (s) to 3 sf depending on accuracy of Q used from (a)
		(ii)	Volume of gas, $V = \frac{5.0 \times 10^5}{39 \times 10^6}$ (= 0.0128 (m ³))	C1	Possible ecf from (a)
			Mass of gas $= V\rho = 0.0128 \times 0.72$		
			Mass = 9.2×10^{-3} (kg)	A1	
	(C)		 Any two from the following : thermal energy/heat is lost through or to walls / ceiling / floor/windows /door of room (AW) other objects within the room (AW) warm <u>air</u> may escape from room / cold <u>air</u> or draughts may enter the room 	B1 B1	Not: Bald 'Heat lost to surrounding' Ignore any references to heater
			Total	9	