1 Fig. 4.1 shows the variation with time t of the displacements x_S and x_T at a point **P** of two sound waves **S** and **T**.

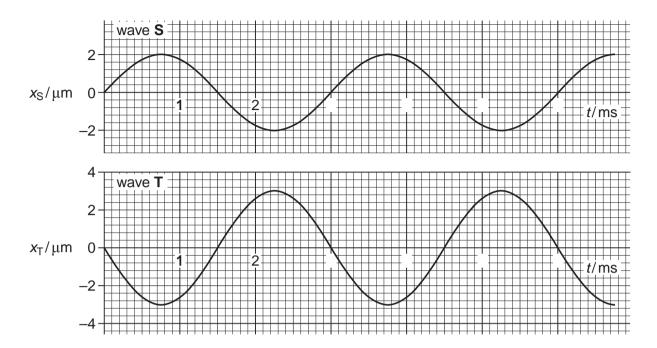


Fig. 4.1

a)	By reference to Fig. 4.1, state one similarity and one difference between these two waves.
	similarity
	difference[2]
b)	Explain whether or not the two waves are coherent.
	[2]
	The speed of the sound waves is $340\mathrm{ms^{-1}}$. Determine the frequency of wave S and hence its wavelength.

(d)		oint ${\bf P}$ the two sound waves superpose (collitant displacement ${\bf x}$ of the two waves at time	mbine). By reference to Fig. 4.1 determine the
	(i)	$t_1 = 1.5 \mathrm{ms}$	
	(ii)	$t_2 = 2.25 \mathrm{ms}.$	x ₁ = μm [1]
			x ₂ = μm [1]
(e)	The	intensity of wave S alone at point P is <i>I</i> .	
	(i)	Show that the intensity of wave T alone at	point P is 2.25 <i>I</i> .
	(ii)	Calculate the intensity of the resultant wav	[2] e at point P in terms of <i>I</i> .
		intens	sity = <i>I</i> [2]

(f) The sound waves shown in Fig. 4.1 are emitted from the loudspeakers labelled **S** and **T** in Fig. 4.2 and detected by the microphone at point **P**.

Fig. 4.2

(i)	Calculate the distance that loudspeaker S must be moved towards P to	bring t	the	two
	vaves into phase at P . State your reasoning clearly.			

	distance = m [2
(ii)	Describe how the intensity of the sound wave detected at P varies as loudspeaker S i moved as in (i).
	[2

[Total: 18]

2	(a)	(i)	Define the terms wavelength, frequency and speed used to describe a progressive wave.
			wavelength, λ
			frequency, f
			speed, v
			[3]
		(ii)	Hence derive the wave equation $v = f\lambda$ which relates these terms together.
	/ b\	<i>(</i> i)	[2] Explain what is mount by infra rad radiation
	(D)	(1)	Explain what is meant by infra-red radiation.
			[2]
		(ii)	For infra-red radiation emitted at a frequency of 6.7 x 10 ¹³ Hz, calculate
			1 its wavelength
			wavelength = m [2]
			2 its period of oscillation.
			period =s [2]

(iii) Infra-red radiation is absorbed by molecular ions in a crystal causing them to vibrate at a frequency of 6.7 x 10^{13} Hz. The amplitude of oscillation of the ions is 8.0 x 10^{-12} m.

On the grid of Fig. 5.1 sketch a graph showing the variation with time of the displacement of an ion.

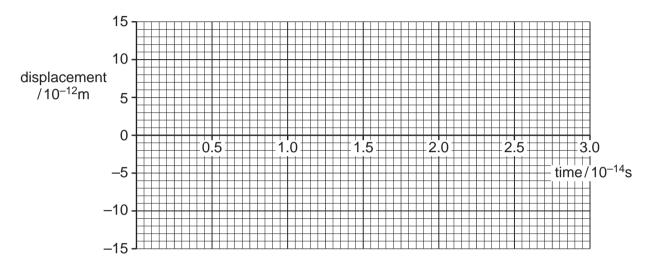


Fig. 5.1

[3]

[Total: 14]

3	(a)					
			plain the meaning of			
		(i)	interference			
			[2]			
		(ii)	coherence.			
			[1]			
	(b)	mic the	6.1 shows two microwave transmitters A and B 0.20 m apart. The transmitters emirrowaves of equal amplitude in phase and of wavelength 30 mm. A detector, moved along line PQ at a distance of 5.0 m from AB , detects regions of high and low intensity forming interference pattern.			
			P			
			A			
			0.30 m 5.0 m			
			0.20 m			
			B '			
			$oldsymbol{Q}$			
			Eim C 4			
	Fig. 6.1					
		(i)	Use the ideas of path difference or phase difference to explain how the interference pattern is formed.			
			[3]			

(ii)	Calculate the separation between one region of high intensity and the next along the line PQ .
	separation = m [2]
(iii)	State the effect, if any, on the position and intensity of the maxima when each of the following changes is made, separately, to the experiment.
	1 The amplitude of the transmitted waves is doubled.
	[2]
	2 The separation between the transmitters is halved.
	[2]
	3 The phase of transmitter A is reversed so that there is now a phase difference of 180° between the waves from A and B .
	[2]
	[Total: 14]