1	(a) W	When used to describe stationary (standing) waves explain the terms			
	(i)	node			
			[1]		
	(ii)	antinode			
			[1]		
		g. 5.1 shows a string fixed at one end under tension. The frequency of the mec cillator close to the fixed end is varied until a stationary wave is formed on the string			
		90 cm ——			
		clamp			
	(oscillator			
		Fig. 5.1			
	(i)	Explain with reference to a progressive wave on the string how the stationary value.	vave is		
			•••••		
			[3]		
	(ii)	-	[1]		
	(iii)		_		
		number of antinodes =	[1]		

	(iv)	The frequency of the oscillator causing the stationary wave shown in Fig. 5.1 is 120 Hz.				
		The length of the string between the fixed end and the pulley is 90 cm.				
		Calculate the speed of the progressive wave on the string.				
		speed = ms^{-1} [3]				
(c)	The	speed v of a progressive wave on a stretched string is given by the formula				
		$V = k \sqrt{W}$				
	where k is a constant for that string. W is the tension in the string which is equal to the weight of the mass hanging from the end of the string.					
	vibr	b) the weight of the mass on the end of the string is 4.0 N. The oscillator continues to ate the string at 120 Hz. Explain whether or not you would expect to observe a stationary e on the string when the weight of the suspended mass is changed to 9.0 N.				
		[3]				
		[Total: 13]				

2 Fig. 4.1 shows the variation with time *t* of the displacement *y* of the air at a point **P** in front of a loudspeaker emitting a sound wave of a single frequency.

Fig. 4.1

- (a) Calculate
 - (i) the frequency f of oscillation of the air at P

(ii) the wavelength λ of the wave which is travelling at 340 m s⁻¹.

$$\lambda = m [2]$$

(b) Draw on Fig. 4.1 the variation with time of the displacement of the air at a point Q a distance of one quarter of a wavelength λ/4 beyond P. Label this curve Q. [2]

(c)	difference between the displacements of the air at the points P and Q .
	[3]
(d)	The amplitude of vibration of the loudspeaker is increased to produce a wave at the original frequency, but of twice the intensity . Sketch on Fig. 4.1 the new displacement against time graph, for $t = 0$ to $t = 2 \times 10^{-3}$ s, at point P . Label this curve P Explain your reasoning.
	[3]

(e) An open tube is placed in front of the loudspeaker such that its far end is at point ${\bf Q}$. See Fig. 4.2.

Fig. 4.2

(i)	Explain how and under what conditions a stationary sound wave is formed in the tube.
	[3]
(ii)	Assume that the conditions are met for a stationary wave to be set up in the tube. The distance between the points $\bf P$ and $\bf Q$ is $\lambda/4$.
	Describe the motion of the air molecules
	1 at point Q
	2 at point P.
	[3]

3	(a)	State the principle	of superposition of	waves	
5	(a)	Otate the philopie	or superposition of	waves.	
					[2]
(b) Coherent red light of wavelength 6.00 x 10 ⁻⁷ m is incident normally on a pair of S ₁ and S ₂ . A pattern of bright and dark lines, called fringes, appears close to distant viewing screen.			 mally on a pair of narrow slits		
		doul	ole slit		viewing screen
	ĵ	incident ————————————————————————————————————	S ₁		P
			◄	2.50 m	
					not to scale
				Fig. 5.1	
		(i) Explain the te	rm coherent.		
					[1]
		(ii) State a value	of the path differen	ce between the light wav	es from slits $\mathbf{S_1}$ and $\mathbf{S_2}$ to the

(iii) Calculate the separation of adjacent dark fringes on the screen near to point P.

slit separation $S_1S_2 = 1.20 \,\text{mm}$ distance between slits and screen = 2.50 m

screen to produce a dark fringe on the screen.

Use the following data:

separation = m [3]

path difference = m [1]

iv)	when each of the following changes is made, separately, to the apparatus.		
	1	The light source is changed from a red to a yellow light source.	
		[2]	
	2	Slit $\mathbf{S_1}$ is made wider than slit $\mathbf{S_2}$ but their centres remain the same distance apart.	
		[2]	
	3	The viewing screen is moved closer to the slits.	
		[2]	
		[Total: 13]	