1 Fig. 1.1 shows the I-V characteristic of a slice of semiconducting material.

Fig. 1.1

(a) (i) Define resistance.

.....[1]

(ii) Show that the resistance of the slice is about 250 Ω when there is a current of 40 mA in it.

[2]

(b) The dimensions of the slice are shown in Fig. 1.2.

Fig. 1.2

	O m. [9]
	ho =Ωm [3]
(c)	Explain how the $I-V$ characteristic shows that the resistivity of the semiconducting material decreases with increasing temperature.
	In your answer you should explain how you are aware that the temperature of the slice changes.
	[4]
	[Total: 10]

Calculate the resistivity ρ of the semiconducting material when there is a current I of 40 mA in

the slice.

- 2 (a) The battery in an electric car has an e.m.f. of 24V. It can provide a current of 200 A to the motor for a period of 4.0 hours. Define the term *electromotive force* (e.m.f.) for the battery. Show that the total charge Q that can be delivered by the battery is about 3×10^6 C. (ii) [2] (iii) Calculate the total energy E that can be supplied by the battery at a constant e.m.f. of 24 V. *E* = J [2] **(b)** The charger for the battery has a 30V output supplying a current *I*. The total resistance of the circuit is indicated by one resistor R in Fig. 2.1. The positive terminal of the battery is connected to X. 30 V charger Fig. 2.1 (i) Complete the circuit by drawing the correct symbol for the battery between X and Y on
 - Fig. 2.1. The battery has negligible internal resistance. [1]
 - The potential difference across the battery remains at 24V. The current I provided by the (ii) battery charger is constant at 120 A. Show that the value of the resistance of **R** is 0.050Ω .

power lost =W	[2]
iv) The efficiency of the charging process is given by the equation	
efficiency = $\frac{\text{input power from charger} - \text{power loss in } \mathbf{R}}{\text{input power from charger}}$.	
Calculate its value as a percentage.	
efficiency =%	[3]
(i) Show that it takes about 7 hours to charge a completely flat battery.	,
	[2]
(ii) Calculate the cost of charging the battery at 26p per kWh.	
cost =p	[1]
[Total:	17]

(iii) Calculate the power lost in ${\bf R}$ as the battery is charging.