1 This question is about possible heating circuits used to demist the rear window of a car. The heater is made of 8 thin strips of a metal conductor fused onto the glass surface. Fig. 2.1 shows the 8 strips connected in parallel to the car battery of e.m.f. *E* and internal resistance *r*.

Fig. 2.1

- (a) The potential difference across each strip is 12V when a current of 2.0 A passes through it.
 - (i) Calculate the resistance $r_{\rm p}$ of one strip of the heater.

$$r_{\rm p}$$
 = Ω [1]

(ii) Calculate the total resistance $R_{\rm p}$ of the heater.

$$R_{\rm p}$$
 = Ω [3]

(iii) Show that the power P dissipated by the heater is about 200 W.

[2]

(b) Each strip is $0.90 \, \text{m}$ long, $2.4 \times 10^{-4} \, \text{m}$ thick and $2.0 \times 10^{-3} \, \text{m}$ wide.

Calculate the resistivity ρ of the metal of the strip. Give the unit with your answer.

(c)		alternative way of making the heater is to connect eight metal strips in series . The heater dissipate the same power as the parallel combination of (a) when the p.d. across it is
	(i)	Explain why the total resistance of the series heater must equal $R_{\rm p}$ calculated in (a)(ii).
		[1]
	(ii)	Calculate the resistance $r_{\rm s}$ of one strip of this series heater.
		$r_{\rm s}$ = Ω [1]
	(iii)	Suggest, with a reason, whether you would choose the series or parallel circuit arrangement of the strips for a demister heater.
		[1]
(d)		2.2 is a graph showing how the potential difference across the terminals of the battery es with the current drawn from it.
		p.d./V 12 10 8 0 10 20 30 40 current/A
	(i)	From the graph find the e.m.f. <i>E</i> of the battery.
		<i>E</i> = ∨ [1]

(ii) Use data from the graph to calculate the internal resistance r of the battery.

 $r = \dots \Omega$ [3] [Total: 17]

2 This question is about the use of a light-dependent resistor (LDR) as a light sensor in a potential divider circuit. Fig. 3.1 shows how the resistance of a particular LDR varies with light intensity.

Fig. 3.1

a)	Explain the term intensity.
	[1]
b)	The intensity of daylight is about $10\mathrm{W}\mathrm{m}^{-2}$ and at night time is about $0.1\mathrm{W}\mathrm{m}^{-2}$. Describe how the resistance of the LDR changes during the day compared with how it changes at night.
	[2]

(c) Fig. 3.2 shows a light-sensing potential divider circuit where the LDR is connected in parallel to the input of an electronic circuit that operates a 230V mains lamp.

Fig. 3.2

	be at least 5.0V to activate the circuit and switch on the lamp. The lamp is switched on when the light intensity falls to 1.0W m ⁻² .						
	(i)	Use Fig. 3.1 to determine the resistance of the LDR at a light intensity of 1.0W m ⁻² .					
		resistance = kΩ [1]					
	(ii)	Calculate the current in the LDR in Fig. 3.2 for the p.d. across it to be 5.0V.					
		current = A [2]					
	(iii)	Show that the resistance of the fixed resistor \textbf{R} in Fig. 3.2 is 2.0 $k\Omega.$					
		[1]					
(d)	The lamp switches off when the light intensity reaches 2.5W m ⁻² . Calculate the p.d. acros the LDR when this happens.						
		potential difference =					
(e)	Exp on.	plain why the LDR must be shielded or be at some distance from the lamp when it switches					
		[2]					
		[Total: 12]					

The electronic circuit draws a negligible current. The potential difference across the LDR must

3	(a)	Two	filament lamps are described as being 230V, 25W and 230V, 60W.
		(i)	Describe what is meant by '230 V, 25 W' for a lamp.
			[2]
		(ii)	Calculate the resistance of the 25W lamp when connected to a 230V supply.
			resistance = Ω [2]
		(iii)	Each of the two lamps is connected across a 230V supply. Explain which lamp has the greater current.
			ro1
		(iv)	Both lamps are connected in parallel across the 230V supply. The resistance of the
			60W lamp in the circuit is 880Ω . Calculate
			1 the total resistance <i>R</i> across the supply
			$R = \dots \Omega$ 2 the current I drawn from the supply.
			the current <i>I</i> drawn from the supply.

(b)	circ	60W filament lamp is connected to a 6.0V battery. The resistance of the lamp in this uit is 70Ω . Explain why this value differs from the value given in (a)(iv) when the lamp is nected to the 230V supply.			
	In your answer, you should make clear how your explanation links with the observations.				
		[2]			
(c)	•	mistake a householder leaves a 60W filament lamp switched on overnight for a period of hours.			
	The cost of 1.0 kilowatt-hour of electricity is 21 pence.				
	(i)	Define the kilowatt-hour (kWh).			
		[1]			
	(ii)	Calculate the cost of this mistake to the householder.			
		cost = pence [2]			
		[Total: 15]			