Question		ion	Answer	Marks	Guidance
1	(a)		Work done/energy <u>transfer</u> (red) per unit time	B1	accept per second or rate of energy transfer / rate of doing work or energy transfer / time taken
	(b)	(i)	using P = VI I = 40/230 = 0.17(4) (A)	C1 A1	accept 4/23
	(b)	(ii)	$R = 230/0.17 = 1400 (\Omega)$	B1	possible ecf b(i); expect and accept 1322 or 1353 Ω accept $40 = 230^2$ /R giving R = 52900/ $40 = 1322$ Ω
	(c)		$I = RA/\rho$ $I = 1.3 \times 10^3 \times 3.0 \times 10^{-8} / 7.0 \times 10^{-5}$ I = 0.56 (m)	C1 C1 A1	Choosing R = ρ I/A substitution; ecf b(ii) evaluation; allow 0.57 m (using R = 1322 Ω) and 0.58 m (using 1353 Ω) and 0.6 m (using 1400 Ω)
A A A	(d)		larger power needs larger I so smaller R (for same V) smaller R (but same length) so larger A / thicker	B1 B1 B1	accept P = V^2/R or calculation I = 0.26 Å giving R = 880 or 890 Ω NB if R calculated correctly here, give first 2 marks hence smaller R (but same length) so larger A / thicker
	(e)	(i)	Q = It = 0.17 x 8 x 60 x 60 Q = 4900 (C)	C1 A1	ecf b(i) allow 4896; or 5000 or 5011 if using I = 0.174 A give 1 mark for 1.36 or 81.6
		(ii)1	(a unit of) energy equal to 3.6 MJ or 1 kW for 1 h/AW	B1	eg 1000 W for 3600 s or similar
		(ii)2	40 x 8 = 320 Wh / 0.32 kWh 0.32 x 22 = 7.0(4) p	C1 A1	accept 7 p (no SF error); allow 7000p (7040) for 1 mark
			Total	15	

Question		on	Answer	Marks	Guidance	
2	(a)	(i)1	infinity	B1	accept symbol	
	(a)	(i)2	R = $1.8/10 \times 10^{-3}$ R = 180Ω	C1 A1	0.18 Ω scores 1 mark	
A A A	(a)	(ii)	resistance decreases because I increases more than V therefore since R = V/I value decreases/AW	B1 B1 B1	accept calculation at second value, e.g. at 2.0 R = 53 Ω, with comparison OR at two other values QWC mark for second marking point	
A A A	(b)		correct <u>symbol</u> and <u>direction</u> for LED R in series with LED across XY ammeter in series voltmeter in parallel with LED only	B1 B1 B1 B1	circle not essential, internal line optional no variable resistor	
	(c)		torch; car brake/rear light/ traffic light, etc. torch: draws a lower current / light lasts longer before battery discharged/AW or LEDs (much) more efficient (at converting electrical energy into light)/AW or if one LED fails remainder still lit/AW	M1 A1	suitable example accept any one sensible statement, include longer life, more durable contradictory statements score zero	
			Total	12		

Question		on	Expected Answers	М	Additional Guidance
3			•		
	а	i	read off value of current (at V = 6.0 V)	B1	any reference to using gradient scores 0/2 accept I = 0.25 (A) or 250 (mA)
			calculate R using V/I	B1	accept R = 24 Ω
		ii	V is not proportional to I	B1	accept not a straight line; R is not constant
	b	i	Q = It = 0.25 x 1 = 0.25 C	B1	
		ii	E = VIt or QV = 6 x 0.25 = 1.5 J	B1	ecf(b)(i)
		iii	$E = VIt = 1.5 \times 4 \times 60 \times 60$	C1	ecf b(ii)
			$= 2.16 \times 10^4 \text{ J}$	A1	accept 2.2 x 10 ⁴ J; allow 360 J for 1 mark only
	С	i	energy transfer per unit charge	B1	or energy transfer/charge; work done /charge
			from electrical to other forms	B1	or across LED
		ii	30 mA	A1	
		iii	Use of P = VI	M1	$3 \times 0.030 = 0.090 \text{ W per LED so } 0.090 \times 4$
			suitable method (may be expressed purely in numerical form)	A1	or 30 mA in two branches at 6 V or total current is 60
		∔.	= 0.36 W	A0	mA from 6 V battery
		iv	· Con	B1	symbol for LED
			16V	B1	correct orientation of LED
				B1	correct circuit
	d		draws a lower current/ light lasts longer (before battery discharged/)AW or LEDs more efficient (at converting electrical energy into light) or if one LED fails there are still two lit or more robust/longer working life	B1	allow lower power consumption/AW
			Total question 1	16	