1 (a) Fig. 7.1 shows a length of tape under tension.

Fig. 7.1

(i)	Explain why the tape is most likely to break at point B .	
(ii)	Explain what is meant by the statement:	
	'the tape has gone beyond its elastic limit'.	
		[1]

(b) Fig. 7.2 shows one possible method for determining the Young modulus of a metal in the form of a wire.

Fig. 7.2

Describe how you can use this apparatus to determine the Young modulus of the metal. The sections below should be helpful when writing your answers.

	The measurements to be taken:
	In your answer, you should use appropriate technical terms, spelled correctly.
\wedge	The equipment used to take the measurements:
	In your answer, you should use appropriate technical terms, spelled correctly.
	How you would determine Young modulus from your measurements:

[8]

2	(a)	In what form is energy stored when a metal wire is extended by a force?		
			[1]
	(b)	A metal wire of length 1.2 m is clamped very of the wire. The extension of the wire is 0.3 is 1.4×10^{-7} m ² and the Young modulus of the r	5 mm. The cross-sectional area of the wi	
		Calculate		
		(i) the strain of the wire		
		str	ain =[[1]
		tens	ion – N. I	'21

ultimate tensile strength of about 60 GPa. In comparison, high-carbon steel has an ultimatensile strength of about 1.2 GPa. Under excessive tensile stress, the carbon nanotube undergo plastic deformation. This deformation begins at a strain of about 5%. Carbon nanotubes have a low density for a solid. Carbon nanotubes have recently been used in high quality racing bicycles.	es on
(i) 1 The diameter of CNTs is a few nanometres. What is one nanometre in metres?	
	[1]
2 Explain what is meant by <i>plastic deformation</i> .	
[[1]
(ii) How many times stronger are CNTs than high-carbon steel?	
	[1]
(iii) State two advantages of making a bicycle frame using CNT technology rather the high-carbon steel.	an
	[2]
[Total:	9]

(c) There is great excitement at the moment about structures known as carbon nanotubes (CNTs). CNTs are cylindrical tubes of carbon atoms. These cylindrical tubes have diameter of a few nanometres and can be several millimetres in length. Carbon nanotubes are one of the strongest and stiffest materials known. Recently a carbon nanotube was tested to have an

3 (a) Fig. 3.1 shows the stress against strain graph for a metal X up to its breaking point.

Fig. 3.1

(i) Use Fig. 3.1 to state the physical properties of this metal.

- (ii) On the axes of Fig. 3.1, sketch a graph for a ductile material, having a larger Young modulus value than the metal **X**, up to its breaking point. [2]
- **(b)** Fig. 3.2 shows a stationary cable car.

Fig. 3.2

The cable on both sides of the car is at an angle of 12° to the horizontal. The radius of the cable is 2.6×10^{-2} m. The stress in the cable is 1.8×10^{7} Pa. The Young modulus of the material of the cable is 2.0×10^{11} Pa.			
(i)	Calculate the strain experienced by th	e cable.	
		strain =[2]	
(ii)	Calculate the tension <i>T</i> in the cable.		
		<i>T</i> = N [2]	
(iii)	Calculate the weight of the cable car.	, =	
		weight = N [3]	
		[Total: 11]	

ŀ	(a)	Define the <i>force constant</i> of a spring.
		[1]
		[1]

(b) Fig. 3.1 shows a trolley attached by two **stretched** springs **A** and **B** to fixed supports.

Fig. 3.1

The trolley is on a horizontal table and at rest. The springs **A** and **B** are identical.

- (i) On Fig. 3.1, draw an arrow to show the direction of the force exerted by spring A on the trolley. Label this arrow F. [1]
- (ii) The mass of the trolley is 0.80 kg. The force constant of each spring is 14 N m⁻¹. A student pulls the trolley to the left as shown in Fig. 3.2.

Fig. 3.2

	extension of spring ${\bf A}$ is 0.30 m and the extension of spring ${\bf B}$ is 0.50 m. The student ases the trolley. Calculate the initial values of
1	the acceleration of the trolley

			a	cceleration =			ms	s ⁻² [3]
	2	the ratio						
			elastic potential elastic potential	energy for s	pring B pring A			
(iii)	Exp righ		acceleration of the	trolley decre	eases as it t	ravels a sm	all distance	to the
	••••							
(iv)	Sta hea	ite and explair avy object is fi	n how the accelerated to the trolley.	ation in your	answer to (i i)1 would be	e different w	/hen a
								[2]
							[Tota	al: 10]

Physics And Maths Tutor.com

5 (a) Fig. 8.1 shows the stress against strain graph obtained from a test on a sample of wire of a ductile material.

Fig. 8.1

(i) Use Fig. 8.1 to determine the Young modulus of the material.

		Young modulus = Pa	[3]
(ii)	Use	Fig. 8.1 to describe the behaviour of the material	
	1	in section AB	
			[1]
	2	in section BC .	
			[1]

(iii)	State and explain the effect on the linear section AB of the graph when a sample of the same wire, but of twice the original length is used.			
		[2]		
mat		sion graph for an elastic material. The work done on this w) is equal to the energy returned by the material when v).		
force	extension	force loading unloading extension		
	Fig. 8.2	Fig. 8.3		
	tyres. Aeroplane tyres experienc	extension graph for a material used to make aeroplane e sudden impact forces during landing. m Fig. 8.3. Describe the properties of this material and able for aeroplane tyres.		
	In your answer, you should use a	appropriate technical terms, spelled correctly.		

[Total: 10]