1	(a)	Def	fine a	a <i>vector</i> quantity	and give one e	xample.
						[2]
	(b)	Fig	. 3.1	shows a force F	at an angle of 3	30° to the horizontal direction.
					30°	
					Fi	ig. 3.1
		(i)	The	e horizontal com	nponent of the fo	orce F is 7.0 N. Calculate the magnitude of the force F .
		(ii)				F =
				ves a horizontal		m. Calculate
			1	the work done	by the force	
			2	the rate of wor	k done by the fo	work done = J [2]
			-	10.10.01 44011	actions by the lo	

(c) Fig. 3.2 shows the forces acting on a stage light of weight 120 N held stationary by two separate cables.

Fig. 3.2

The angle between the two cables is 90° . One cable has tension $70\,\mathrm{N}$ and the other has tension T.

- (ii) Sketch a labelled vector triangle for the forces acting on the stage light. Hence, determine the magnitude of the tension *T*.

direction[2]

[Total: 13]

(a)	Pov	ower can be measured in watts. Define the <i>watt</i> .						
(b)	vert	An electric motor-driven crane is used to raise a load of bricks of mass 700 kg through a vertical height of 8.5 m in a time of 45 s. The efficiency of the motor-driven crane is 30%. Calculate						
	(i) the gravitational potential energy E_p gained by the bricks							
		<i>E</i> _p = J [1]						
	(ii)	the output power of the motor-driven crane						
		output power = W [1]						
((iii)	the input power to the motor-driven crane.						
		input power = W [1] [Total: 4]						

2

(a)			mass m is at rest. A constant net force F acts on the car and it moves a distance x in ction of the force. The final velocity of the car is v .
	(i)	Wr	ite down the equation
		1	for the work done by the force F
		2	relating force F and acceleration a.
	(ii)	He	[1] nce show that the kinetic energy of the car is given by the equation $E_{\rm k} = \frac{1}{2} m v^2$.
(b)			[3] Iking distance of an empty van travelling at a steady speed on a level road is 50 m. is now fully loaded with goods and travels at the same speed on the same road.
	Exp	olain	whether or not the braking distance would be the same. Assume that the driver the same braking force.
			[3]
			[Total: 7]

3