Question		ion	Answer	Marks	Guidance
1	а		GPE linked to 'position' / height (in a gravitational field)	B1	Allow : GPE linked to an object 'raised' / 'lowered' (on the Earth)
	b	i	$v^{2} = u^{2} + 2as$ $v^{2} = 15^{2} + (2 \times 9.81 \times 2.8)$ or $v = \sqrt{280}$ speed = 17 (m s ⁻¹)	C1 A1	Allow other correct methods Note: Answer is 16.7 m s ⁻¹ to 3sf
		ii	(initial energy =) $\frac{1}{2} \times 0.20 \times 16.7^2$ or (initial energy =) $0.20 \times 9.81 \times 2.8 + \frac{1}{2} \times 0.20 \times 15^2$ (final energy =) $\frac{1}{2} \times 0.20 \times 12^2$ energy lost = 14 (J)	C1 C1 A1	Possible ecf from b(i) Special case: 1 mark for 8.1 (J); the difference in the initial KE ($\frac{1}{2} \times 0.20 \times 15^2$) and the final KE ($\frac{1}{2} \times 0.20 \times 12^2$)
		iii	change in velocity = 17 + 12 (= 29 m s ⁻¹) or 16.7 + 12 (= 28.7 m s ⁻¹) F = ma force = $0.20 \times \frac{29}{0.065}$ or force = $0.20 \times \frac{28.7}{0.065}$ force = 89 (N) or force = 88 (N)	C1 A1	Possible ecf from (b)(i) Allow 1 mark for 'force = $0.20 \times \frac{(b)(i) - 12}{0.065}$, calculated with an answer.
			Total	8	

Question		on	Answers	Marks	Guidance
2	(a)		force \times distance \underline{moved} / $\underline{travelled}$ in the direction of the force	B1	Allow force × displacement in direction of force
	(b)		(Work done against friction generates) heat / thermal energy / internal energy	B1	The term heat / thermal / internal to be included and spelled correctly to gain the B1 mark.
	(c)		1 J (of work done) <u>per</u> second	Β1	Allow $(1 \text{ W} = 1) \text{ J s}^{-1}$ or J/s Allow $(1) \text{ joules per second}$ Not W = 1 J in 1 s Allow full credit as long as the definition for the 'watt' is not confused with the definition for 'power' (Examples: • power = rate of work done; W = 1 J s^{-1} \checkmark • The rate of work done. It is J per s \times • watt = rate of work done, W = 1 J s^{-1} \times)
	(d)	(i)	vertical distance = $(75^2 - 45^2)^{1/2}$ or vertical distance = 60 (m)	C1	
			work done = $5200 \times 9.81 \times 60$ or work done = 3.06×10^{6} (J)	C1	
			power = $3.06 \times 10^{6}/90$		
			power = 3.4×10^4 (J s ⁻¹)	A1	Allow 2 marks for an answer of 2.04×10^6 (J s ⁻¹); 1.5 used instead of 90 s No credit for [5200 × g × 75]/90 or [5200 × g × 45]/90
		(ii)	efficiency = $\frac{34}{170} \times 100$		
			efficiency = 20 %	B1	Possible ecf from (i)
			Total	7	

C	Question		Answer	Marks	Guidance
3	(a)		power = work done/ time or energy/time or 'rate of work done'	B1	
	(b)		power = KE/time Using $\frac{1}{2}mv^2$ (power =) $\frac{1}{2} \times 9.7 \times 10^5$ (kg s ⁻¹) × 3.0 ² (power =) 4.365 × 10 ⁶ (W)	C1 C1 A0	Allow : 1 mark for a bald answer of 4.37×10^6 since this is a 'show' question
	(c)		efficiency = $\frac{1.2}{4.4} \times 100$ efficiency = 27 %	B1	Note: Answer to 3 sf is 27.3% if 4.4×10^6 is used Note: Answer is 27.5% if 4.365×10^6 is used Not: 0.27
	(d)		(volume per second =) $9.7 \times 10^{5}/1030$ or 941.7	C1	
			mass per second = density × volume per second 9.7 × 10 ⁵ = 1030 × (3.0 × π × r^2) $r^2 = \frac{9.7 \times 10^5}{1030 \times 3\pi}$	C1	Allow any subject
			radius = 10 (m)	A1	Allow: 2 marks for 100 (m); answer not square rooted
	(e)	(i)	water has greater density or water has greater mass / KE for the <u>same volume</u>	B1	
		(ii)	 Any <u>one</u> from: Not an eyesore / cannot be seen Not noisy Predictable energy (with in and out tides) Do not occupy space on the land 	B1	Allow other sensible suggestions
			Total	9	

Qu	Question		Expected Answers	Marks	Additional Guidance
4	a		Energy can neither be created nor destroyed (but it can be transformed from one form to another) or Total energy of a closed system remains constant	B1	
	b	i	loss in PE = $0.10 \times 9.81 \times 0.60$		
			= 0.59 (J) or 0.589 (J)	B1	
		ii	$v^2 = 2as / v^2 = 2 \times 2.8 \times 0.60 / v^2 = 3.36$	M1	
			$v = \sqrt{2 \times 2.8 \times 0.60}$ or $v = 1.833$ or $v = 1.833$	M1	
			$v = 1.8 \text{ (m s}^{-1})$	A0	
		iii	(KE =) $\frac{1}{2}mv^2$ / (KE =) $\frac{1}{2} \times 0.25 \times 1.8^2$	C1	Possible ecf from (b)(ii)
			kinetic energy = 0.405 (J) or 0.41 (J)	A1	Note: The answer is 0.42 (J) when 1.83 m s ⁻¹ is used Allow: 1 mark for 0.162 (J) if 0.10 kg mass is used or for 0.567 (J) if 0.35 kg is used
		iv	<u>KE</u> of 0.10 kg mass is not taken into account (AW)	B1	Not: 'There is friction'
			Total	7	

5	Expected Answers	Marks	Additional Guidance
а	work done = force × distance <u>moved</u> / <u>travelled</u> (in direction of force)	B1	Note : Must have reference to 'distance moved / travelled' Allow : 'work done = force × displacement'
	The term <i>distance / displacement</i> to be included and spelled correctly to gain mark		Must use tick or cross on Scoris to show if the mark is awarded
b(i)	gravitational potential	B1	Not: 'potential' on its own
	x ²⁰ kinetic	B1	Note: Ignore any reference to sound
	The term <i>kinetic</i> to be included and spelled correctly to gain the second B1 mark		Must use ticks on Scoris to show where the marks are awarded
b(ii)	(GPE =) $4000 \times 9.81 \times 110$ / (GPE =) 4.32×10^{6} or (KE =) $\frac{1}{2} \times 4000 \times 20^{2}$ / (KE =) 8.0×10^{5}	C1	
	Work done = $(4000 \times 9.81 \times 110) - (\frac{1}{2} \times 4000 \times 20^2)$	C1	Allow : 2 marks if second line is written or $3.5(16) \times 10^6$ (J) is quoted
	force = $\frac{3.516 \times 10^6}{510}$ force = 6.9×10^3 (N)	A1	Allow : 3 marks for a bald answer of 6.9×10^3 (N)
	Total	6	

Question		tion	Expected Answers	Marks	Additional Guidance
6	(a)		work done = force × distance <u>moved</u> in the direction of the force	M1 A1	Allow: 'displacement' instead of 'distance' Allow: 1 mark for 'force × distance in the direction of the force' Not: work done = energy transfer
	(b)		power = work (done)/time or power = energy/time or power = rate of work done	B1	Not: Mixture of quantities and units, e.g: 'energy per second'
	(c)		This is because of heat/thermal energy/friction	B1	Not: sound/vibrations
	(d)	(i)	$E_{\rm k} = \frac{1}{2}mv^2 / \qquad E_{\rm k} = \frac{1}{2} \times 810 \times 30^2$ $E_{\rm k} = 3.645 \times 10^5 ({\rm J}) \text{ or } 3.65 \times 10^5 ({\rm J})$	C1 A1	Note : Bald answer 3.645×10^5 (J) or 3.6×10^5 (J) scores 2/2 marks Allow : 1 mark for wrongly rounded answer of 3.7×10^5 (J)
		(ii)	power = $\frac{3.65 \times 10^5}{12}$ power = 3.04×10^4 (W) $\approx 3.0 \times 10^4$ (W)	B1	Possible ecf
		(iii) 1.	work done = 500×30 work done = $15000 (J s^{-1})$	B1	
		2.	'output energy' = $18 \times 46 \times 10^6 \times 0.25$ (= 2.07 × 10 ⁸ J)	C1	Allow : 'input energy' = $18 \times 46 \times 10^{6}$ (= 8.28×10^{8} J)
			total drive time = $\frac{18 \times 46 \times 10^{-10} \times 0.25}{15000}$ (= 1.38 × 10 ⁴ s)	C1	This C1 mark can also be scored using: 'distance = $2.07 \times 10^8/500$ ' Possible ecf from iii 1 .
			total drive distance = $1.38 \times 10^4 \times 30$ = 4.1×10^5 (m)	A1	Allow: Bald 4.1×10^5 (m) scores 3/3 2/3 for 1.66×10^6 m if 25% efficiency is not used 2/3 if 30 kW from ii is used; answer 2.0 or 2.1×10^5 (m)
			Total	11	