Mark scheme - Motion

			represented a point when the ball was just leaving the hard floor. The maximum height after the first bounce had to be when the ball was still accelerating and had zero velocity.
	Total	1	
5	B	1	
	Total	1	
6	A	1	
	Total	1	
7	Separation between droplets increases (further down)	B1	
	Total	1	
8	C	1	Examiner's Comments All of the questions showed a positive discrimination, and the less able candidates could access the easier questions. The questions in Section A do require careful reading and scrutiny. Candidates are advised to reflect carefully before recording their response in the box. Candidates must endeavour to use a variety of quick techniques when answering multiple choice questions. The correct key was \mathbf{C} and the most popular distractor was \mathbf{A}. The kinetic energy of the ball at the ground was K. At maximum height, the ball just has horizontal component of velocity. The kinetic energy of the ball is proportional to speed ${ }^{2}$. At the maximum height the kinetic energy must therefore be $\cos ^{2} 30^{\circ} \mathrm{K}=0.75 \mathrm{~K}$.
	Total	1	
9	B	1	Examiner's Comments The question requires knowledge and understanding of the forces acting on the ball in flight and resultant force. The path of the ball is shown. At \mathbf{X}, the ball is travelling in the direction shown by the \mathbf{D} arrow. The drag force will be in the opposite direction. Weight is other force acting on the ball - vertically downwards. Vectorially adding the weight and the small drag will produce a resultant in the direction shown by the \mathbf{B} arrow. The answer (key) is therefore is \mathbf{B}. The most popular distractors were \mathbf{A} and \mathbf{D}. Exemplar 1 The right-hand side of the exemplar has the jottings of a candidate and it does help to visualise the problem. This would certainly not qualify as an acceptable answer in Section B, but here, it

| | | | |
| :--- | :--- | :--- | :--- | :--- |

4 a	a	0.185 (s^{2})	B1	Examiner's Comments This question was well answered. Since the raw data was given to three significant figures the calculated data should also have been given to three significant figures. Candidates did not score the mark for writing 0.1849 (four significant figures or 0.184 (truncating the data).
	b i	Plots one missing plot to less than a half small square Draws straight line of best fit	B1 B1	Allow ECF from (b) Allow ECF Expect to be balance of points about line of best-fit. Judge straightness by eye. Not thick lines, multiple lines Examiner's Comments This question was again well answered with the majority of the candidates plotting the data point correctly. Sometimes the straight line of best fit did not have the points balanced. Candidates should be encouraged to plot graphs using a sharp pencil. It is helpful to use a clear 30 cm rule to draw the straight line of best fit. Thick plots and/or lines do not score marks.
	ii	Determines gradient correctly and gradient in the range 0.210 to 0.225	B1	Ignore significant figures. Examiner's Comments To determine the gradient of the straight line of best fit candidates are expected to identify two points (x_{1}, y_{1}) and (x_{2}, y_{2}) which are on the line and substitute them $\text { into } \quad \text { gradient }=\frac{\Delta y}{\Delta x}=\frac{y_{2}-y_{1}}{x_{2}-x}$ The two points should be at least half the length of the drawn line apart. The advantage of this method is that it automatically allows for negative gradients. Common errors included the use data points from the table which are not on the line or just using one data point and assuming that the line passed through the origin.
	c i	Evidence of use of ${ }^{s=u t+\frac{1}{2} a t^{2}}$ (and $u=0$) Manipulation leading to $t^{2}=\left(\frac{2}{g}\right) h$		

			candidates. The common error was only referring to braking distance.
	Total	1	
1 6	$20\left(\mathrm{~m} \mathrm{~s}^{-1}\right)$	B1	
	Total	1	
1 7	C	1	
	Total	1	
1 8	C	1	
	Total	1	
1 9	B	1	
	Total	1	
2	B	1	Examiner's Comments This question proved particularly straightforward and accessible to nearly all candidates.
	Total	1	
2 1	C	1	
	Total	1	
2	A	1	
	Total	1	
2 3	A	1	
	Total	1	
2	B	1	Examiner's Comments This question required knowledge and understanding of equations of motions. The simplest route to getting the correct answer was the equation $s=1 / 2 a t^{2}$ with the displacement $s=0.102 \mathrm{~m}$. About two thirds of the candidates got the correct answer B. All the other distractors were based on using incorrect values for s. For example, the answer would have been D for $s=12.7 \mathrm{~cm}$. The exemplar 3 below shows a typical working for a correct answer. Exemplar 3

		Total	1	
3		C	1	Examiner's Comments This question was slightly more challenging.
		Total	1	
3 4	a	$\begin{aligned} & (u=) 68 \sin 11^{\circ} \text { or } 13.0\left(\mathrm{~m} \mathrm{~s}^{-1}\right) \\ & t=13.0 / 9.81 \text { and } t \text { correctly evaluated } \\ & t=1.3(2)(\mathrm{s}) \end{aligned}$	C1 C1 A0	Not $\mathrm{t}=90 /(68 \cos (11))=1.35$ for zero marks. Allow any subject
	b	(Kinetic energy) reduces (with height) At maximum height, KE is minimum / non-zero	B1 B1	Allow idea that KE is transferred to GPE / KE store reduces and GPE store increases Not references to KE being a vector / having components for second mark
		Total	4	
3 5		using $y=m x+c d / v=v / 2 a+t$ gives an equation resulting in a straight line graph as a and t are constants.	B1 B1	
		Total	2	
3 6		The steel ball not released straight away (because of the residual magnetism of the electromagnet) / The trapdoor does not open immediately. (AW) Increase distance of fall.	B1	
		Total	2	
3 7		D	1	
		Total	2	
3 8		$\begin{aligned} & \left(v^{2}=2 \text { as }+u^{2}\right) ; v=(2 \times 9.81 \times \\ & 0.30)^{1 / 2}(\text { Allow any subject }) \\ & \text { speed }=2.4\left(\mathrm{~m} \mathrm{~s}^{-1}\right) \end{aligned}$	C1 A1	Allow ($s=1 / 2 a t^{2}$) to give $t=0.247$ and ($\mathrm{v}=\mathrm{at}$) gives 2.42 Examiner's Comments Examiners were pleased that nearly all candidates successfully employed Newton's equations of motion ideas to arrive at the correct answer. Those that did not either mis- substituted values or forgot to take a square root.
		Total	2	
3 9		Distance travelled from the moment the driver sees a hazard until the brakes are applied Distance proportional to speed (for constant thinking time)	B1 B1	

(20.8 $\mathrm{m} \mathrm{s}^{-2}$.

				The gradient of a velocity-time graph is acceleration.
	ii	$\begin{array}{ll}4.7 \\ \text { or } & \frac{1}{2} \times 0.057 \times v^{2}\end{array}$ $\begin{aligned} & \frac{1}{2} \times 0.057 \times 4.7^{2}=0.629565 \\ & 0.63 \mathrm{~J} \end{aligned}$	M1 M1 A0	Examiner's Comments This was also a "show" type of question. Candidates needed to correctly read the maximum velocity ($4.79 \mathrm{~m} \mathrm{~s}^{-1}$) from the graph and change the mass of 57 g into kilograms. To gain the marks, clear substitution into the kinetic energy equation was needed with a correctly evaluated answer. Exemplar 2 $\begin{align*} & \text { (ii) the kinetic energy of the ball just before impact with the surface is } 0.63 \mathrm{~J} . \\ & \begin{aligned} V=4.7 \mathrm{~ms}^{-1} \quad K E & =\frac{1}{2}\left(57 \times 10^{-3}\right)(4.7)^{2} \\ & =0.62957 \\ & \approx 0.63 \mathrm{~J} \end{aligned} \end{align*}$ In this two-mark answer, the candidate has clearly demonstrated the value from the graph as well as the equation that is going to be used. The candidate has correctly changed 57 g to kilograms effectively by using standard form. The candidate has then correctly evaluated the expression as 0.62957 before stating that this is approximately equal to 0.63 J . Candidates often find it helpful to underline relevant quantities. In this response the candidate has underlined 0.63 J .
b	i	$\begin{aligned} & 0.8 \times 0.63 \mathrm{~J}(0.504 \mathrm{~J}) \mathrm{OR}=\frac{2 \times \mathrm{KE}}{0.057} \\ & v^{2} \\ & v^{2}=\frac{2 \times 0.504}{0.057} \\ & 4.2(1)\left(\mathrm{ms}^{-1}\right) \end{aligned}$	C1 C1 A1	Allow one mark for correct rearrangement of KE equation with incorrect KE 17.684 Examiner's Comments In this question, higher ability candidates initially determined the kinetic energy $(0.504 \mathrm{~J})$ as the ball leaves the surface, before rearranging the kinetic energy equation. A few candidates did not take the final square root.
	ii	Straight line from $(0.48,-4.2)$ to x-axis and plotted to $\pm 1 / 2$ small square x-axis intercept at $t=0.91 \pm 0.03$ (s) from negative v	C1	Allow ECF from (b)(i) Allow $(0.49,-4.2) /(0.50,-4.2) /(0.51,-4.2) /(0.52,-4.2)$ Allow ECF for incorrect negative v Examiner's Comments In this question, a large number of candidates did not understand that velocity is a vector quantity and drew a line with a negative gradient back towards the x-axis. The velocity of the ball as it leaves the surface is in the opposite direction and is therefore $-4.2 \mathrm{~m} \mathrm{~s}^{-1}$. Candidates then needed to draw a parallel line to the initial line (since the acceleration is still the same).

			AfL Vector quantities have both a magnitude and a direction.
	area under the graph = $\frac{1}{2} \times 4.2 \times 0.43$ $0.90 \text { (m) }$	C1	Allow ECF from (i) and (ii) Allow use of equation of motion: e.g. $s=\frac{4.2^{2}}{2 \times 9.81} \quad$ or $s=(-4.2 \times 0.43)+\quad \frac{\mathbf{1}}{2}$ $\times 9.81 \times 0.43^{2}$ (numbers must be seen) Allow use of loss of KE = gain in PE Allow one significant figure Note 0.84 for $\Delta t=0.40$ to 0.97 for $\Delta t=0.46$ Examiner's Comments There were many methods in which candidates could gain the marks in this question. It was helpful for clear methods to be demonstrated. The simplest was to determine the area under the velocity-time graph. Candidates also used the equations of uniform motion. Common errors seen included the incorrect velocity and when using the equations of motion but being confused about negative signs. Examiners on this occasion allowed an answer of 0.9 m which is one significant figure. Since the data used is to two significant figures, the final answer should also be to two significant figures. AfL The area under a velocity-time graph is displacement.
c	Line will curve / be non-linear OR (magnitude of) gradient of line decreases (with increase in time) (Line will end with) a lower maximum/final velocity or hit the ground after a longer time	B1	Allow sketch or gradient decreases / changes Not gradient is smaller / less steep / shallower / lower Allow ball will have a lower maximum/final velocity or hit the ground after a longer time) Examiner's Comments Candidates found this question challenging. Many candidates answered the question in terms of air resistance and terminal velocity.

				The question required candidates to explain how the graph would appear. Several candidates stated that the gradient would be smaller but did not clearly state that the gradient would decrease over time and not indicate that the line would curve. Candidates needed to also indicate that the line would indicate a lower maximum velocity at a longer time.
		Total	12	
$\begin{aligned} & 4 \\ & 7 \end{aligned}$	a	$(s=) 1.23(\mathrm{~m}) \text { or }(\mathbf{t}=) 0.50(\mathrm{~s})$ $v^{2}=2 \times 9.81 \times 1.23$ or $1.23=0.50 \times \frac{v}{2}$ or $1.23=v \times 0.50-1 / 2 \times 9.81 \times 0.50^{2}$ or $v=9.81 \times 0.50$ or $1.23=1 / 2 \times 9.81 \times t^{2} ; t=0.50(\mathrm{~s})$ and $v=9.81 \times 0.50$ $\mathrm{v}=4.9\left(\mathrm{~m} \mathrm{~s}^{-1}\right)$	C1	Note there are no marks for gradient calculations here Allow s between $1.22(\mathrm{~m})$ and 1.26 (m) Allow t between 0.495 (s) and 0.505 (s) Substitution into $v^{2}=u^{2}+2$ as with $u=0$ Substitution into $s=\frac{(v+u)}{2} \times t$ with $u=0$ Substitution into $s=v t-1 / 2$ at 2 Substitution into $v=u+$ at with $u=0$ Substitution into $s=v t-1 / 2 a t^{2}$ and $v=u+$ at with $u=0$ Allow $g=9.8$ Not $g=10$, unless already penalised in 21(c)(ii) Examiner's Comments This question was generally well-answered with candidates using a range of equations of motion to show the speed to be $4.9 \mathrm{~m} \mathrm{~s}^{-1}$. The most popular route was: $v=0+(9.81 \times 0.50)=4.905 \mathrm{~m} \mathrm{~s}^{-1} .$
	b	Correct tangent at $t=0.50 \mathrm{~s}$ with positive gradient Attempt at calculating the gradient of a tangent Gradient calculated in the range 3.20 to $3.80\left(\mathrm{~m} \mathrm{~s}^{-1}\right)$	B1	Note must evidence for Δs and Δt values either here or on Fig. 22 Allow this M1 mark for tangent not drawn at $t=0.50 \mathrm{~s}$ Note this mark can only be scored if the tangent is drawn at $t=0.50$ s and the calculated value falls in this range Examiner's Comments In this question, candidates had clear instructions on what to do. Most candidates drew adequate tangents at $t=0.50 \mathrm{~s}$ and did the correct analysis to determine the rebound speed of the ball. Most responses were in the range required (3.20 to $4.00 \mathrm{~m} \mathrm{~s}^{-1}$) and most candidates scored 3 marks. About a quarter of the candidates drew tangents at times other than $t=0.50 \mathrm{~s}$. This meant that they could only score a maximum of 1 mark for correctly calculating the gradient of their tangent.
	c	$(\Delta v=) 4.9+3.5$ or $(\Delta v=) 8.4\left(\mathrm{~ms}^{-1}\right)$	C1	Possible ECF from (c) Allow $(\Delta \rho=)(4.9+3.5) \times 0.056$ or $(\Delta \rho=) 0.47\left(\mathrm{~kg} \mathrm{~ms}^{-1}\right)$

		$\begin{aligned} & \text { force }=\frac{8.4 \times 0.056}{1.8 \times 10^{-3}} \\ & \text { force }=260(\mathrm{~N}) \end{aligned}$	A1	Allow 1 mark for $44(\mathrm{~N}) ; \Delta v=4.9-3.5$ used Ignore sign Examiner's Comments The correct answer of 260 N eluded even many of the top-end candidates. The vector nature of velocity, or momentum, was overlooked, with many candidates calculating the magnitude of the force as follows: $\text { force }=\frac{\Delta p}{\Delta t}=\frac{0.056(4.9-3.5)}{1.8 \times 10^{-3}}=44 \mathrm{~N}$ The magnitude of the change in the velocity of the ball 0.056(4.5 + 3.5), which would have given the correct answer of 260 N . Misconception Some examples of incorrect physics were: - force $=$ weight of the ball $=0.056 \times 9.81$ - Using $\Delta \mathrm{t}=0.50 \mathrm{~s}$ instead of 1.8 ms . - Using either $4.9 \mathrm{~m} \mathrm{~s}^{-1}$ or $3.5 \mathrm{~m} \mathrm{~s}^{-1}$ to calculate the force.
		Total	7	
4		$\begin{aligned} & \text { horizontal component = } 17 \sin 30 \text { or } 17 \\ & \cos 60=8.5\left(\mathrm{~m} \mathrm{~s}^{-1}\right) \end{aligned}$ at highest point vertical component of velocity is zero.	B1 B1	
		Total	2	
9	i	$\left(v^{2}=u^{2}+2 a s\right)$ $2.5^{2}=1.3^{2}+2 \times 1.10 \times a \quad(\text { Any } \quad \text { subject })$ $a=2.1\left(\mathrm{~m} \mathrm{~s}^{-2}\right)$	C1 A1	Allow other methods Allow this mark for $t=0.58$ (s) Note answer to 3 SF is $2.07\left(\mathrm{~m} \mathrm{~s}^{-2}\right)$ Examiner's Comments Most candidates demonstrated excellent understanding and application of equations of motion. The solutions were often well represented, calculations done correctly and the answer written to the correct number of significant figures (SF). A variety of routes were possible, but the most popular method was using the equation $v^{2}=u^{2}+2$ as. Exemplar 5

				(i) Calculate the acceleration a of the trolley, This exemplar from a grade E candidate shows flawless technique. The known and unknown quantities are written on the left-hand side. The equation is clear, as is the substitution and the final answer for the acceleration.
		$m a=m g \sin \theta$ or $a=g \sin \theta$ or $2.07=$ $9.81 \times \sin \theta$ ii $\theta=12^{\circ}$	C1 A1	Allow $2.1\left(\mathrm{~m} \mathrm{~s}^{-1}\right)$ Allow $g=9.8$ Note using $\tan ^{-1}(2.07 / 9.81)$ is wrong physics. Possible ECF from (b)(i) Allow $g=10$ here; it gives the same answer to 2 SF Allow 1 mark for 78°
		Total	2	
5	a	Tangent drawn at $t=1.75 \mathrm{~s}$ (judge by eye) Gradient in the range $11.0\left(\mathrm{~m} \mathrm{~s}^{-1}\right)$ to $13.0\left(\mathrm{~m} \mathrm{~s}^{-1}\right)$	B1 B1	
	b	(After 0.75 s) gradient decreases with time Indicating velocity is decreasing / deceleration	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	Examiner's Comments In part (b) some candidates were vague in their responses, for example, stating that the gradient changes rather than stating that the gradient decreases. In part (c) most candidates were able to draw a reasonable tangent. Parts (d) and (e) were harder to answer. Part (d) required the correct time interval to be applied by interpreting the braking time and not including the thinking time. In part (e), high achieving candidates applied the halving of the initial speed to the effect this had on the thinking distance, the thinking time, the braking distance and the braking time.
		Total	4	
$\begin{aligned} & 5 \\ & 1 \end{aligned}$	in time t_{o} car moves $v t_{0}$ path lengths travelled by the two pulses differ by $\mathrm{c}\left(\mathrm{t}_{\mathrm{o}}-\mathrm{t}\right)$ but this is twice the distance the car has moved as it is a reflected signal so $2 v t_{o}=c\left(t_{o}-t\right)$.		B1 M1	justified e.g. best solved by imagining first pulse takes time T_{o} and second time T and then $T_{o}-T=t_{o}$
			A1 A0	-t and / or drawing a space diagram.
		Total	3	

| | |
| :--- | :--- | :--- | :--- | :--- |
| 5 | |

\begin{tabular}{|c|c|c|c|c|c|}
\hline \& \& \& Mass of car determined using scales and KE \(=1 / 2 \times\) mass \(\times\) speed \(^{2}\). \& B1 \& \\
\hline \& \& \& Total \& 3 \& \\
\hline 6 \& \& i \& An arrow from trolley to ramp along the string (for the tension) and a downwards arrow from the trolley (for the weight). \& B1 \& \begin{tabular}{l}
Allow arrows in correct directions anywhere on Fig. 21 \\
Not arrow for the tension parallel to the ramp \\
Not arrow perpendicular to the ramp for the weight \\
Not two arrow heads in opposite directions along the string for the tension \\
Examiner's Comments \\
Most of the candidates answered this question well with two clearly drawn arrows for the weight of the trolley and the tension in the string. The most frequent mistake was to draw the tension arrow parallel to the ramp.
\end{tabular} \\
\hline \multicolumn{2}{|l|}{} \& ii

ii \& $$
\begin{aligned}
& \left(s=1 / 2 a t^{2}\right) ; 0.80=1 / 2 \times 3.0 \times t^{2} \text { (Any } \\
& \text { subject) }
\end{aligned}
$$

\[
t=0.73 (s)

\] \& C1 \& | Note: Apply SF penalty if 0.7 s is on the answer line or the final answer |
| :--- |
| Allow 1 mark for 0.40 (s); $9.8 \mathrm{~m} \mathrm{~s}^{-2}$ used instead of $3.0 \mathrm{~m} \mathrm{~s}^{-2}$ |
| Allow full credit for alternative methods, e.g: $v^{2}=2 \times 0.80 \times 3.0 ; v=2.19\left(\mathrm{~m} \mathrm{~s}^{-1}\right)$ $\begin{equation*} t=\frac{2.19}{3.0} \tag{C1} \end{equation*}$ $t=0.73 \text { (s) }$ |
| Examiner's Comments |
| Candidates answered this question extremely well. The correct equation was identified, values substituted correctly and the final answer written to two significant figures. Some low-scoring candidates attempted to use the equation $x=v t$ or struggled with rearranging the equation $s=1 / 2 a t^{2}$. A disappointing number of candidates lost a mark for writing the answer to one significant figure on the answer line after correctly calculating the time t to be 0.73 s . |

\hline \& \& \& Total \& 3 \&

\hline \multirow[t]{2}{*}{$$
\begin{aligned}
& 6 \\
& 1
\end{aligned}
$$} \& \multirow[t]{2}{*}{a} \& \multicolumn{2}{|r|}{\multirow[t]{2}{*}{\[

$$
\begin{aligned}
& \mathrm{u}=17 \cos 30=14.7\left(\mathrm{~m} \mathrm{~s}^{-1}\right) \\
& \mathrm{h}=\mathrm{ut}-1 / 2 \mathrm{gt}^{2} ;=14.7 \times 1.5-1 / 2 \times 9.81 \times \\
& 1.5^{2} \\
& \mathrm{~h}=11(\mathrm{~m})
\end{aligned}
$$

\]}} \& \multirow[t]{2}{*}{| C1 |
| :--- |
| C1 |
| A1 |} \& or use $v^{2}=u^{2}-2 \mathrm{gs}$ or $\mathrm{s}=(\mathrm{u}+\mathrm{v}) \mathrm{t} / 2$

\hline \& \& \& \& \& note: if $\mathrm{g}=10$ is used, then maximum score is $2 / 3$

\hline \& \& ii \& $\mathrm{s}=2 \times 8.5 \times 1.5$ \& C1 \& ecf 2a

\hline
\end{tabular}

		$\mathrm{s}=26$ (m)	A1	allow 25.5 m
	b	$\begin{aligned} & 0=17 \sin 30 t-1 / 2 \times 9.81 \times t^{2} \\ & \text { so } t=0 \text { or } 17 / 9.81=1.73 \\ & s=14.7 \times 1.73=25.4(\mathrm{~m}) \end{aligned}$	C1 C1 A1	allow s $=15 \times 1.7=25.5$ (accept 25 or 26 to 2 sf)
	c	the ball has the same speed (of 17 m s^{-1}) but is at different (either at 60° or 30°) angle to the horizontal. larger horizontal velocity (second trajectory) so travels further or higher bounce (first trajectory) so less drag from grass so travels further.	B1	accept any sensible answer, e.g. steeper bounce loses more energy in impact so slows more.
		Total	10	
$\begin{array}{\|l\|l} 6 \\ 2 \end{array}$	a	Maximum of two from: (thinking) time is the same (braking) time is halved / 1.25 s total time is 2 s AND maximum of two from: (thinking) distance / displacement travelled (before braking) halved / 7.5 m (braking) distance / displacement quarters / 6.25 m total distance $/$ displacement $=13.75 \mathrm{~m}$	$\begin{array}{r} \mathrm{B} 1 \\ \times 3 \end{array}$	
	b	Δ time $=1.75-0.75$ OR 3.25-0.75 Using (c): $F=950 \times \frac{20-12}{1.75-0.75}$ or Using $\quad F=950 \times \frac{20-0}{3.25-0.75} \quad$ or graph: $F=\frac{950 \times 20}{3.25-0.75}$ $7600(\mathrm{~N})$	C1	Allow use of (c) and (a) Allow $a=8.0 \mathrm{~m} \mathrm{~s}^{-2}$ for $v^{2}=u^{2}+2 a s$ or $s=u t+1 / 2 a t^{2}$ methods Not ECF for incorrect time Ignore sign
		Total	6	

6 3		$\begin{aligned} & \frac{0.002}{0.1000}(\times 100) \text { or } \frac{0.1}{1.4}(\times 100) \text { or } g=\frac{1.4^{2}}{2 \times 0.100} \\ & (2 \times 0.071 \ldots+0.02) \text { or } 0.1628 \ldots \text { or } \\ & 16.3 \% \\ & \text { absolute uncertainty }=1.6\left(\mathrm{~m} \mathrm{~s}^{-2}\right) \end{aligned}$ OR $\begin{aligned} & g_{\max }=\frac{1.5^{2}}{2 \times 0.098}(=11.48) \text { or } \\ & g_{\min }=\frac{1.3^{2}}{2 \times 0.102}(=8.28) \\ & \text { range }=3.2\left(\mathrm{~m} \mathrm{~s}^{-2}\right) \end{aligned}$ absolute uncertainty $=1.6\left(\mathrm{~m} \mathrm{~s}^{-2}\right)$	C1 C1 A1 C1 C1 A1 A	Allow 1SF answers here for uncertainties Not $g=9.8$ for this C1 mark; must see working Allow 0.16 or 16% Note: The answer must be given to 2 SF Ignore value of g given on the answer line, e.g. 9.8 ± 1.6 Note: The answer must be given to 2 SF
		Total	3	
6 4		Distance / displacement / length measured using the (metre) rule and time measured using the stopwatch $\begin{aligned} & (S=1 / 2[v+u] t \text { and } u=0) \\ & v=2 \times \text { average velocity } \end{aligned}$	B1	Allow this mark even if the measurements are taken after trolley has left the ramp Note v must be the subject Allow $v=2 \times$ average speed Allow $v=2 x / t$ without the terms defined (x can be d, D or s) Not $s=1 / 2 v t$ Allow $v=x / t$, where $x=$ distance travelled along horizontal surface assuming it is smooth / negligible friction Allow 1 mark for the following where there is no mention of timing / stopwatch: Measure height / vertical distance with a (metre) rule and use $v=\sqrt{ } 2 g h$ (no need to define the terms) Examiner's Comments Most candidates struggled to gain full marks in this opening question. The first mark, for using a ruler to measure the length of the ramp and the stopwatch for the time taken to travel the length of the ramp, was gained by just over half of the candidates. The second mark required a clear statement that the final velocity was twice the mean velocity of the trolley. Equivalent statements were allowed. Unfortunately, many candidates opted to describe lightgates arrangements or using inappropriate equations of motion.
		Total	4	
	a	weight; (tractive) force up slope; drag; (normal) reaction All forces in correct direction and correctly labelled.	B1	

	e.g. electromagnet or light gate to start timer		timer/starting/stopping Method to stop timer, e.g. trap door, second light gate	B1

| | | | |
| :--- | :--- | :--- | :--- |$|$| straight line (up to 0.30 s), so velocity / speed is constant |
| :--- |
| Allow gradient decreases (between 0.30 s and 0.80 s), so velocity / |
| speed decreases |
| Allow gradient is zero (after 0.80 s), so velocity / speed is zero |
| Examiner's Comments |
| Most candidates gained two or more marks. Answers were often |
| longer than required, but most candidates managed to analyse the |
| displacement-time graph of the trolley extremely well. A few |
| candidates lost marks for incorrect physics such as |
| 'the trolley decelerates at a constant speed between 0.3 s and 0.8 s '. |
| The top-end candidates scored full marks for their descriptions and |
| recognised that the velocity was equal to the gradient. A small |
| number of candidates spoilt their answers by suggesting that the |
| trolley 'bounced back'. |

\begin{tabular}{|c|c|c|c|c|}
\hline \& \& \& \& \(m x+c\). A simple rearrangement of the relationship without any explanation was not considered to be adequate. \\
\hline \& \& \begin{tabular}{l}
one acceptable worst-fit line drawn \\
large triangle used to determine gradient \\
Gradient (used to determine 'worst' g) \\
absolute uncertainty given to one decimal place
\end{tabular} \& B1
B1
B1

B1 \& | roughly between extremes of top and bottom error bars or by eye; consequential ecfs for rest of (ii) $\Delta x>0.13$ |
| :--- |
| expect steepest 12.5 ± 0.2 or shallowest 10.3 ± 0.2 |
| if point from bii not plotted steepest line is 12.9 |
| answer from ± 0.8 to $1.1\left(\mathrm{~m} \mathrm{~s}^{-2}\right)$; allow ecf from gradient value |
| Examiner's Comments |
| To avoid the problem of various lengths of error bar, candidates were judged to have drawn an acceptable worst fit line if it passed through opposite ends of the top and bottom bars on their graphs. Almost all gained the mark for using a triangle to determine the gradient of the line which spanned more than 0.13 on the x-scale. Most candidates were able to gain credit for finding the gradient of their graph correctly. The determination of the absolute uncertainty to one decimal place then proved to be too difficult a challenge for the majority. |

\hline \& d \& card appears shorter or time measured shorter calculated speed of trolley larger gradient of graph steeper or $v^{2} \alpha \mathrm{~g} / \mathrm{AW}$ so calculated g is greater \& B1
B1
B1

B1 \& | N.B. each B mark is consequential on the previous statement; e.g. ecf max of 3 marks for correct consequences of stating card appears longer or time longer |
| :--- |
| Examiner's Comments |
| Candidates gave full and usually clear answers to this part. There were four consequential marking points in this answer. Each candidate was given credit for every point that followed logically from the previous one, even when that previous one was incorrect. In the example (exemplar 8) shown here the candidate stated that the card appeared longer, which is incorrect. There were still three marks available for stating that the speed would appear lower and deducing that g would appear smaller. By this method most candidates were credited with at least half of the available marks. |
| Exemplar 8 |
| The time taken in increased. |
| $v^{2}=\frac{m}{m+6800}=1-20 g$ |

\hline \& \& Total \& 15 \&

\hline \[
5

\] \& \& | 0.22 and 0.26 |
| :--- |
| correct plotting of points on Fig. 2.2 | \& B1

B1 \& tolerance on each point ± 0.5 small scale division

\hline
\end{tabular}

		$n=\frac{28.2^{2}}{2 \times 9.81}$ (Any subject) $h=40.5(\mathrm{~m})$	M1 A0	Allow ${ }^{h}=\frac{28^{2}}{2 \times 9.81}$ or $(30 \sin (70))^{2 /(2 \times 9.81)}$ No ECF from (a)(i) for the second mark
	ii	The ball has horizontal motion / velocity (AW)	B1	Allow idea of horizontal e.g. sideways, forwards Not: 'moving' unqualified
	$\begin{aligned} & \text { i } \\ & \text { v } \end{aligned}$	$\begin{aligned} & \text { (horizontal velocity }=) 30.0 \cos 70^{\circ} \text { or } \\ & 10.2 \ldots\left(\mathrm{~m} \mathrm{~s}^{-1}\right) \text { or } 30.0 \sin 20^{\circ} . \\ & E_{\mathrm{k}}=1 / 2 \times 0.057 \times 10.26^{2} \\ & E_{\mathrm{k}}=3.0(\mathrm{~J}) \end{aligned}$	C1	Allow 1 SF answer Not 22 (J), $v=28$ used Not 23 (J), $v=28.2$ used Not 140 (J), $v=70$ used Examiner's Comments Part (i) was particularly well answered by 95% of all candidates. Nine out of ten candidates scored full marks in part (a)(ii), as they remembered that the question asks to show that the maximum height is around 40 m . Working for this type of question is essential. In part (a)(iii), three quarters of all candidates correctly talked about the ball still having a horizontal velocity (which wasn't zero) and therefore still possessing some KE. The key to this part (a)(iv), remembered by most candidates, was to use the horizontal component of velocity to find the KE at the maximum height. Some used the initial speed and others used the initial vertical velocity component found in part (a)(i).
		Total	6	
$\begin{aligned} & 8 \\ & 0 \end{aligned}$		*Level 3 (5-6 marks) Clear procedure, measurements and analysis. There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated.	B1×6	Indicative scientific points may include: Procedure - Release ball and start timer. - Stop timer when ball reaches bottom of ramp. - Make distance as long as possible to reduce \% uncertainty in timing.

				Exemplar 7 - Describe how an experiment can be conducted in the laboratory to investigate the. relationship between v and x. Explain how the data can be analysed to determine F. - (1). Put...blosks.under..a ramp...with...s...groave.. in...untre...this.makes.surt..Aachs.... ralls.in...straight...lins... Stach.....with....maximum...anmbes...of...blseks. Ind....lig.t...gate find velocity by recor ding. fine for boll to tranel..... Additional answer space if required. ini fial jpeed, v, Repeat step........forthe new ramp haight............this until there is only.... ... Dns.....black under the.....ramp. (3) Plot a. . greph of v^{2}.gainst. x. Prai a a straight inge of best fit Arough He origin, sincs $v^{2} \alpha x$. The gradient will be $\frac{2 F}{m}$. You ran determin. m...gy. messiving.mas ot the ball with a ballans. You can find Foby ..agkulating gradient $x \frac{m}{2}$ This response is similar in many ways to the previous exemplar. The difference is that the candidate has explained carefully how they will achieve different speeds and equally, how 2 light gates connected to a datalogger will measure the time of transit between the gates. The calculation of the speed v is easy to spot as the distance between the light gates divided by the time between them. Furthermore, there is reference to repeat readings for given v and an average distance for x. The analysis to find F is not quite as explicit as that in the previous exemplar, yet it is easily sufficient for a Level 3 response.
		Total	6	
$\begin{aligned} & 8 \\ & 5 \end{aligned}$	i	Tangent drawn at $t=4.0 \mathrm{~s}$ Attempt at calculating the gradient v calculated from gradient and between $9.50-10.50\left(\mathrm{~m} \mathrm{~s}^{-1}\right)$ OR $\begin{aligned} & s=20(\mathrm{~m}) \text { and } s=1 / 2 \mathrm{at}^{2} \\ & 20=1 / 2 a \times 4.0^{2} \text { or } a=2.5\left(\mathrm{~m} \mathrm{~s}^{-2}\right) \\ & v=2.5 \times 4.0 \text { or } v^{2}=2 \times 2.5 \times 20 \\ & v=10\left(\mathrm{~m} \mathrm{~s}^{-1}\right) \end{aligned}$	C1 C1 A1 C1 C1 C1 A0	Allow other correct methods Note working required for this mark
	ii	change in momentum $=1200 \times 10$ or $12000\left(\mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1}\right)$ rate of change of momentum $=3000$ unit: $\mathrm{kg} \mathrm{m} \mathrm{s}^{-2}$ or N OR $F=1200 \times 2.5$	C1 A1 B1 C1 A1 B1	Allow ECF from (i) Allow 2850-3150 Allow newton Allow ECF from (i) Allow newton

				Most candidates suggested an appropriate graph to plot and then described how Q could be calculated using the gradient.
		Total	6	
8 7		Level 3 (5-6 marks) Clear description of experiment and measurements and clear analysis. There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated. Level 2 (3-4 marks) Some description of experiment and some measurements and some analysis. There is a line of reasoning presented with some structure. The information presented is in the most-part relevant and supported by some evidence. Level 1 (1-2 marks) Limited description of experiment or Limited measurements or Limited analysis The information is basic and communicated in an unstructured way. The information is supported by limited evidence and the relationship to the evidence may not be clear. 0 marks No response or no response worthy of credit.	B1×6	Indicative scientific points may include: Description - Release method - Ensure bob is not pushed - Repeat experiment for same H - Repeat for different H - Centre of mass of single bob and joined bob considered - Keep bob string taught Measurements - Measure heights h and H with ruler - Use centre of mass of bob or another suitable method - Use video camera to record motion - Use of datalogger and appropriate sensor to measure H and h - Measure mass with (top pan) balance Analysis - Construct a table of h and H - Plot graph of h against H - LoBF should pass through origin. - Determine gradient or calculate h / H repeatedly - gradient $=\left(\frac{M}{M+m}\right)^{2}$ (gradient must be consistent with the plot) - Masses substituted into above expression and checked against experimental gradient
		Total	6	
8	i	$\begin{aligned} & (g \rightarrow)\left[\mathrm{m} \mathrm{~s}^{-2}\right] \text { and }(t \rightarrow)[\mathrm{s}] \text { or }\left(g t^{2} \rightarrow\right)[\mathrm{m} \\ & \left.\mathrm{s}^{-2} \times \mathrm{s}^{2}\right] \end{aligned}$ Clear evidence of working leading to m on both sides	M1 A1	
	ii	s / distance measured with a ruler / tape measure Timer mentioned for measuring $t /$ time Measure distance from bottom of ball to (top of) trapdoor	B1 B1 B1 B1	

		Any one from: - Take repeated readings (for t for same s) to determine average t - Avoid parallax error when using the ruler		
		Total	6	
8 9	i	$\begin{aligned} & (E=) \frac{4000}{0.080} \\ & (F=) \frac{4000}{0.080} \times 1.6 \times 10^{-19} \\ & (a=) \frac{8.0 \times 10^{-15}}{9.11 \times 10^{-31}} \text { or } 8.78 \times 10^{15} \\ & a=8.8 \times 10^{15} \end{aligned}$	C1 C1 C1 A0	$\begin{aligned} & E=5.0 \times 10^{4}\left(\mathrm{~V} \mathrm{~m}^{-1}\right) \\ & F=8.0 \times 10^{-15}(\mathrm{~N}) \end{aligned}$ Allow this mark if the working is shown. If only value is given, then the answer must be 3SF or more Examiner's Comments This question asks for a calculation to show the value of the vertical acceleration in an electric field. The magnitude of the electric field strength first needs to be calculated, followed by the acceleration from Newton's second law. Candidates are reminded that a show question needs to be answered in detail and that each stage should be clear. Roughly equal numbers of candidates scored full marks or zero on this question.
	ii	$\begin{aligned} & (t=) \frac{0.12}{6.0 \times 10^{7}} \\ & \left(t=2.0 \times 10^{-9} \mathrm{~s}\right) \end{aligned}$	M1 A0	Examiner's Comments As with the previous question, there is the need to make sure that the calculation leading to the given answer is clearly set out.
	$\begin{aligned} & \text { ii } \\ & \text { i } \end{aligned}$	$\begin{aligned} & (x=) \frac{1}{2} \times 8.78 \times 10^{15} \times\left(2.0 \times 10^{-9}\right)^{2} \\ & x=1.8 \times 10^{-2}(\mathrm{~m}) \end{aligned}$	C1 A1	Allow $a=8.8 \times 10^{15}$ Examiner's Comments Most candidates appreciated the need to use an equation of motion in their solution, but a significant number of candidates used an initial horizontal velocity in the expression, leading to an incorrect answer. There were also an unusually large number who gave no response. Candidates should appreciate that if they have been given show questions, then it is likely that these values will be used in alter questions. Misconception Many candidates included an initial vertical velocity - it may be helpful to think of this process as analogous to that of projectile motion.
		Total	6	

\begin{tabular}{|c|c|c|c|c|}
\hline 9
0 \& i \& \[
\begin{aligned}
\& E=\frac{1}{2} k x^{2} \text { or } E=\mathrm{mgh} \text { or } \\
\& 0.080 \times 9.81 \times 0.20 \text { or } \frac{1}{2} \times 60 \times x^{2} \\
\& \\
\& 0.080 \times 9.81 \times 0.20=\frac{1}{2} \times 60 \times x^{2} \\
\& x=0.072(\mathrm{~m})
\end{aligned}
\] \& \begin{tabular}{l}
C1 \\
C1 \\
A1
\end{tabular} \& \\
\hline \& ii \& \begin{tabular}{l}
Time of flight is independent of speed/AW \\
1 \\
Because distance of fall is the same and initial velocity vertically is zero / velocity is horizontal at \(\mathbf{X}\) \\
\(D\) increases as speed at \(\mathbf{X}\) increases because the time of flight is \\
2 constant/AW \\
\(D\) is directly proportional to speed at X
\end{tabular} \& B1
B1
M1

A1 \& | Allow algebraic answers that assume initial vertical velocity is zero/velocity is horizontal at X. |
| :--- |
| Allow d = vt idea |
| " D is directly proportional to speed at \mathbf{X} because the time of flight is constant" scores 2. |
| Examiner's Comments |
| This part showed that many candidates thought that the time of flight of the car depended on the take-off speed of the car. Since the car is travelling horizontally the time of flight only depends on the height of the car above the horizontal track. |

\hline \& \& Total \& 7 \&

\hline $$
\begin{aligned}
& 9 \\
& 1
\end{aligned}
$$ \& i \& 22.1 ± 0.9 \& B1 \& value plus uncertainty both required for the mark allow ± 1.0

\hline \multirow[t]{6}{*}{} \& \multirow[t]{2}{*}{ii} \& \multirow[t]{2}{*}{two points plotted correctly, including error bars;} \& B1 \& ecf value and error bar of first point

\hline \& \& \& B1 \& allow ecf from points plotted incorrectly steepest or shallowest possible line that passes through all the error bars; should pass from top of top error bar to bottom of bottom error bar or bottom of top error bar to top of bottom error bar

\hline \& ii \& gradient (= 4d/E) $=2.4 \pm 0.4$; \& B1 \& allow 2.4 ± 0.5

\hline \& ii \& $$
\begin{aligned}
& E=4 \times 2.0 \times 10^{-2} / 2.4 \times 10^{-6}=3.3 \times \\
& 10^{4}
\end{aligned}
$$ \& B1 \&

\hline \& ii \& $(3.3) \pm 0.6 \times 10^{4}$ \& B1 \& $0.1 / 4+0.4 / 2.4=0.192 \times 3.3=0.63$

\hline \& \& \& B1 \& | $0.1 / 4+0.5 / 2.4=0.233 \times 3.3=0.77$ |
| :--- |
| allow $3.3 \pm 0.8 \times 10^{4}$ |

\hline \& \& Total \& 7 \&

\hline $$
\begin{aligned}
& 9 \\
& 2
\end{aligned}
$$ \& i \& \[

$$
\begin{aligned}
& (F=m a=) 190 \times 10^{3}=2.1 \times 10^{5} \mathrm{a} \\
& a=0.90\left(\mathrm{~m} \mathrm{~s}^{-2}\right)
\end{aligned}
$$

\] \& | M1 |
| :--- |
| A0 | \& $\mathrm{a}=0.905$ to 3 SF

\hline \& ii \& $$
\begin{aligned}
& \left(v^{2}=u^{2}+2 \text { as gives }\right) 36=2 \times 0.90 \times s \\
& s=20(\mathrm{~m})
\end{aligned}
$$ \& C1

A1 \& | Allow any valid suvat approach; allow ECF from (i) |
| :--- |
| Note using a = 1 gives $\mathrm{s}=18(\mathrm{~m})$ |

\hline
\end{tabular}

	$\begin{aligned} & \text { ii } \\ & \text { i } \end{aligned}$	$1 \quad P=F v$ One correct calculation e.g. $F=100 \times 10^{3}$ and $v=42$ gives $P=$ $4.2 \times 10^{6}(\mathrm{~W})$ $F \mathrm{~V}=$ constant $2(P=\mathrm{VI}=4.2 \mathrm{MW}$ so $) 4.2 \times 10^{6}=25$ $\times 10^{3} \times 1$ $I=170(\mathrm{~A})$	B1 B1 B1 C1 A1	Equation must be seen (not inferred from working) Allow any corresponding values of F and v ; working must be shown. No credit for finding area below curve Allow F is proportional to $1 / \mathrm{v}$ or graph is hyperbolic or correct calculation of $F v$ at two points (or more) Allow $P=4 \mathrm{MW}$ or ECF from (iii)1 Expect answers between 160-170 (A)
		Total	8	
$\begin{aligned} & 9 \\ & 3 \end{aligned}$	i	From $t=0$ to $t=2.0 \mathrm{~s}$: a non-zero horizontal line From $t=2.0$ to $t=3.5 \mathrm{~s}$: line showing v $=0$ From $t=3.5$ to $t=4.0 \mathrm{~s}$: non-zero horizontal line showing v is opposite in direction and magnitude larger than that of line drawn at $t=0$ to $t=2.0$.	B1 B1 B1	Judgement by eye
	ii	KE is constant. GPE increases linearly / proportional to t	B1 B1	Allow: 'at constant rate' for 'linear' Not: unqualified 'constantly' Examiner's Comments Nearly four fifths of candidates completed 20a well, especially if they clearly stated the equations for momentum and kinetic energy. Those that did not generally forgot that the question required an expression with ' p ' and ' m ' in it. $1 / 2 p v$ was a common wrong answer. 20bi was answered well, with some candidates either slightly misreading the graph when the velocity became negative or not spotting that the line was steeper for the last section of the movement than it was in the first. Most candidates spotted that the KE was constant because the velocity was constant. Rather fewer candidates explained that the GPE increased at a constant rate.
		$\begin{aligned} & V^{2}=0.80^{2}+2 \times 9.81 \times 0.40 \\ & V=2.9\left(\mathrm{~m} \mathrm{~s}^{-1}\right) \end{aligned}$	C1 A1	Allow 1 mark for $(2 \times 9.81 \times 0.40)^{1 / 2}=2.8\left(\mathrm{~m} \mathrm{~s}^{-1}\right)$ Examiner's Comments Many candidates selected the correct equation, although did not realise that the load was not at rest when it was released. The initial

(

			Not gravity will slow it down
Component of train's weight acts against the motion / down the incline / same direction as braking force OR ii some KE transferred to GPE i Smaller distance because larger opposing forces / net force or greater deceleration or less work done by braking force B1	B1	Bot down, parallel Examiner's Comments Candidates found this question requiring an explanation tough. There were many vague answers referring to "gravity" as opposed to the "force due to gravity" or "weight". Candidates should be encouraged to use correct scientific terms. There was also occasional reference to "faster" deceleration. Some candidates correctly answer this question in terms of the kinetic energy being transferred to an increase in gravitational potential energy. Few candidates were precise in discussing the component of the weight parallel to the incline.	
	$\mathbf{1 0}$		

