1	Expected Answers	Marks	Additional Guidance
а	time = $1.2/8.0$	M1	Note: The mark is for dividing the distance by the speed –
	time -0.15 (s)	40	hence must be seen
	time = 0.15 (s)	AU	
b	$s = ut + \frac{1}{2}at^2$ and $u = 0$ / $s = \frac{1}{2}at^2$ /	C1	
	$h = \frac{1}{2} \times 9.81 \times 0.15^2$		
	h = 0.11 (m)	A1	
C	They both have same (vertical) acceleration / same	B1	Note: Must have reference to both objects
C	acceleration of free fall / acceleration of 9.8 ms ⁻²	DI	The indice in the reference to both objects
	(and zero initial vertical velocity)		
	Total	4	

C	Question		Expected Answers	Marks	Additional Guidance
2	(a)		Correct lines from: • joule (J) to N m • watt (W) to J s ⁻¹ • newton (N) to kg m s ⁻²	B2	Note: 2 marks for all correct 1 mark for two correct 0 marks for none or one correct
	(b)	(i)	weight in the range 200 to 1200 (N)	B1	
		(ii)	area in the range 0.01 to 0.08 (m ²)	B1	
		(iii)	pressure = (b)(i)/b(ii)	B1	Allow: 1 sf answer
			Total	5	

C	Question		Expected Answers	Marks	Additional Guidance
3	(a)		A quantity that has (both) magnitude / size and direction	B1	Not 'A quantity that has direction'
	(b)		Circled /underlined quantities are: acceleration, displacement and weight	B1	Note: All three need to be identified for a mark
	(c)	(i)	<u>Constant</u> / <u>steady</u> / <u>uniform</u> acceleration (up to 4 s) Or Velocity increases at a <u>steady</u> / <u>constant</u> / <u>uniform</u> rate Or Has acceleration of 3.5 (m s ⁻²)	B1	Not Accelerates up to 4 s / 'uniform motion' for the first B1 mark Not 'Accelerates at a constant rate'.
			<u>Constant</u> / <u>steady</u> / <u>uniform</u> velocity (after 4 s) Or Zero acceleration Or Travels at a velocity of 24 (m s ⁻¹)	B1	Allow: 'speed' instead of velocity Allow: 2 mark for 'Constant acceleration and then constant speed / velocity'
		(ii)	distance = area (under graph)	C1	Allow: The C1 mark is for distance = $\frac{1}{2}(10+24) \times 4.0$
			distance = 68 (m)	A1	Allow: Bald 68 (m) scores 2 marks
					Bald $\frac{1}{2}(4 \times 14)$ or 28 (m) scores 1 mark for 'area of triangle'
		(iii) 1	Answer in the range: 1.1 to 1.2 (s)	B1	
		(iii)	Same areas under graphs		
		2	$14t = 10t + (0.5 \times 3.5 \times t^2)$	C1	Note: The C1 mark is for substitution
			<i>t</i> = 2.28 (s) ≈ 2.3 (s)	A1	Allow: Bald 2.3 (s) scores 2 marks Allow: Bald ' $t = 2 \times$ (iii)1.' Scores 2 marks
			Total	9	

Q	Question		Expected Answers	Marks	Additional Guidance
4	(a)		Downward arrow at P	B1	Arrow must be close to or at point P
	(b)		From <u>gravitational</u> potential (energy) to kinetic (energy) / KE / E _k (wtte)	B1	The term gravitational to be included and spelled correctly in (b) to gain the <u>first</u> B1 mark
			Any further detail: KE maximum at bottom / Zero (G)PE at bottom / (G)PE is maximum at top / (G)PE and KE at top (wtte)	B1	Not : Heat / sound at ground
	(c)		The acceleration / force / weight is at right angles to horizontal motion / velocity (wtte)	B1	Allow: 'In this direction the force / acceleration is zero'
	(d)		time = $\frac{3.6}{7.0}$ (= 0.514 s)	B1	Allow: time = $\sqrt{(1.3 \times 2)/9.81}$ (= 0.515 s) Allow: Use of 9.8 (m s ⁻²)
	(e)		$u = 0$ and $v = u + at$ or $v^2 = u^2 + 2as$ 'vertical' velocity = $9.81 \times 0.5(14)$ or 'vertical' velocity = $\sqrt{2 \times 9.81 \times 1.3}$	C1	Watch out for: ' $v^2 = u^2 + 2as = 7^2 + (2 \times 9.81 \times 1.3) = 8.6$ ' – this scores <u>no</u> marks because of <u>wrong</u> physics.
			'vertical' velocity = 5.0 (m s ⁻¹) $w^2 = 7.0^2 + 5.0^2$	C1	Note : Getting an answer 5.0 (m s ⁻¹) scores the first 2 marks
			$v = 8.6 \text{ (m s}^{-1})$	A0	Note : Using $t = 0.5$ (s) gives 8.55 (m s ⁻¹) Note : Bald answer scores zero marks – since this is a 'show' question (Allow full marks for correct analysis using the principle of
			T .(.)		conservation of energy.)
			lotal	8	

Q	uesti	on	Answer	Marks	Guidance
5	(a)		velocity = rate of change of <u>displacement</u>	B1	Allow: Equation if labels are defined Not: velocity = displacement/time Not: A mixture of quantity and unit, e.g: 'change in displacement per second'
	(b)		work done = force × distance <u>moved</u> in direction of force	M1 A1	Allow: 'force × displacement' for the M1 mark
	(c)	(i)	It is at right angles to motion	B1	Allow: It is at right angles to slope / sledge
		(ii)	The component of the weight / <i>W</i> / <i>mg</i> (down the slope)	B1	Allow: W sinθ or mgsinθ Not: 'component of gravity' Allow: <u>Resultant</u> of W and N
	(d)	(1 acceleration = gradient / $a = (v-u)/t$ a = 3.0/1.5 $a = 2.0 \text{ (m s}^{-2})$ 2 $a = g \sin \theta$ $\sin \theta = 2.0/9.81$ $\theta = 12^{\circ}$	C1 A1 C1 A1	Allow: 1 sf answer Possible ecf from incorrect value of acceleration <i>a</i> Answer to 3 sf is 11.8° Note : Using 10 m s ⁻² gives an answer of 11.5° - award 2 marks
		(ii)	$a = (-) 15/3.5$ or $a = (-) 4.29 \text{ (m s}^{-2})$ m = 510/4.29 mass = 120 (kg)	C1 C1 A1	Ignore sign Answer to 3 sf is 119 (kg)
			Total	12	

C	Quest	ion	Expected Answers	Marks	Additional Guidance
6	(a)		W = mg weight = $1.50 \times 9.81 = 14.72$ (N) or 14. 7 (N) or 15 (N)	B1	Allow: Use of 9.8 (m s ⁻²) Allow: Bald 15 (N); but not '1.50 × 10 = 15(N)'
	(b)	(i)	<u>Net</u> / <u>resultant</u> force (on B) is less / (net) force (on B) is less than its weight / there is tension (in the string) / there is a vertical / upward / opposing force (on B)	B1	Note: Must have reference to force
		(ii)	$s = ut + \frac{1}{2}at^{2} \text{ and } u = 0$ $1.40 = \frac{1}{2} \times 1.09 \times t^{2}$ t = 1.60 (s)	C1 C1 A1	Allow: 2 marks for 1.75/1.09' if answer from (iii) is used Allow: 2 sf answer Allow: 2 marks if <u>2.80 m</u> is used; time = 2.27 (s)
		(iii)	$v^{2} = 2 \times 1.09 \times 1.40$ / $v = 0 + 1.09 \times 1.60$ $v = 1.75 \text{ (m s}^{-1})$ / $v = 1.74 \text{ (m s}^{-1})$	C1 A1	Possible ecf Allow: 1.7 or 1.8 (m s ⁻¹)
		(iv)	change in velocity = 2.47 + 1.50 (= 3.97 m s ⁻¹) acceleration = $\frac{3.97}{0.030}$ acceleration = 132 (m s ⁻²)	C1 A1	Ignore sign for change in velocity Allow: 130 (m s ⁻²) Special case: acceleration = $\frac{2.47 - 1.50}{0.030}$ = 32.3 or 32 (m s ⁻²) scores 1 mark
			Total	9	

G	Question		Answer	Marks	Guidance
7	(a)		It has direction (and magnitude/size)	B1	Note: M direction must be spelled correctly for the mark
	(b)	(i)	perpendicular component = $8.0 \times 10^{-5} \cos 30$ perpendicular component = 6.9×10^{-5} (N)	B1	Allow: 1 mark if the correct numerical values of the components have been swapped
			parallel component = $8.0 \times 10^{-5} \sin 30$ parallel component = 4.0×10^{-5} (N) or 4×10^{-5} (N)	B1	Note : Penalise POT error once only; eg 6.9 and 4 respectively scores 1 mark Note : Calculator in radian mode gives 1.23×10^{-5} and (-) 7.90×10^{-5} (N); this scores 1 mark
		(ii)	$(F =) 4.0 \times 10^{-5} (N)$	B1	Possible ecf from (b)(i)
			The net force parallel to windscreen = 0 or <i>F</i> is equal to the parallel component (of the weight down the windscreen) or parallel forces must be equal and opposite or $F = 8.0 \times 10^{-5} \sin 30$	B1	Allow : Total force down/up the windscreen/slope is zero Not : 'net force = 0' – this is an incomplete answer
			Total	5	

Q	Question		Answer	Marks	Guidance
8	(a)		$(s = \frac{1}{2}at^2); 0.700 = \frac{1}{2} \times 9.81 \times t^2$	C1	Allow : $a = 9.8 \text{ (m s}^{-2}\text{)}$
			$t^2 = \frac{2 \times 0.700}{9.81} (= 0.1427)$	C1	
			t = 0.378 (s) or 0.38 (s)	A1	Note : Using $a = 10$ (m s ⁻²) gives 0.374 (s) or 0.37 (s); this scores 2 marks Allow full credit for correct use of $v^2 = 2as$ and $v = at$
	(b)	(i)	acceleration or deceleration displacement or distance	B1	
		(ii)	A tangent drawn on Fig. 4.2 at point A	B1	Note: This is an independent mark
			Determine the gradient of the tangent	M1	
			Deceleration value in the range 13.0 to 17.0 (m s ⁻²)	A1	Note : Ignore sign Special case : Allow 1 mark for using a chord about $t = 0.05$ seconds to determine the deceleration <u>and</u> the value lies in the range 13.0 to 17.0 (m s ⁻²)
		(iii)	At A: Drag > weight The ball is decelerating/'slowing down'	B1 B1	Allow: 'friction'/'resistive force' for drag Allow: upward/negative acceleration
			At B : Drag = weight The ball has zero acceleration/has reached terminal velocity/has reached constant velocity	B1 B1	Note: Allow full credit if <i>upthrust</i> <u>and</u> <i>drag</i> are both mentioned and applied correctly at points A and/or B
		(iv)	The (gravitational) potential energy/(G)PE (of the ball) is converted into heat/thermal (energy)	B1	
			Total	12	