Question Number	Answer		Mark
1(a)	A radioactive atom has an unstable nucleus which emits α , β , or γ radiation [at least one of α β γ named]	(1) (1)	2
1(b)	$C \rightarrow {}^{11}_{5}B + {}^{0}_{1}e^{+} + \nu_{e}$		
	Top line correct Bottom line correct	(1) (1)	2
1(c)	Attempt at mass difference calculation Attempt at conversion from (M)eV to J $\Delta E = 1.4 \times 10^{-13}$ (J) Example of calculation:	(1) (1) (1)	3
	$\Delta E= 10\ 253.6 - 10252.2 - 0.5 = 0.889\ MeV$ $\Delta E= 0.889\ MeV \times 1.6 \times 10^{-13}\ J\ MeV^{-1} = 1.42 \times 10^{-13}\ J$		
1(d)	The idea that the sample will not produce radiation for very long (because carbon-11 has a relatively short half-life)	(1)	
	β particles are not very ionising \mathbf{Or} positrons are not very ionising \mathbf{Or} boron is safe in small amounts	(1)	2
1(e)	Use of $\lambda t_{1/2} = \ln 2$ $(\lambda = 5.68 \times 10^{-4} \text{ s}^{-1})$	(1)	
	Use of $A = A_0 e^{-\lambda t}$ Use $A = 1.58 \times 10^6$ Bq in $A = A_0 e^{-\lambda t}$	(1)	
	$A_0 = 1.2 \times 10^7 \text{ Bq}$	(1) (1)	4
	$\begin{split} & \underline{\text{Example of calculation:}} \\ & \lambda = \frac{0.693}{1220\text{s}} = 5.68 \times 10^{-4}\text{s}^{-1} \\ & 1.58 \times 10^6\text{Bq} = A_0 e^{-5.68 \times 10^{-4}\text{s}^{-1} \times 60 \times 60\text{s}} \\ & A_0 = 1.22 \times 10^7\text{Bq} \end{split}$		
	Total for question		13

Question Number	Answer		Mark
2(a)	${}^{14}_{7}\text{N} + {}^{1}_{0}\text{n} \rightarrow {}^{12}_{6}\text{C} + {}^{3}_{1}\text{H}$		
	7^{11}	(1)	
	Top line correct	(1)	
	Bottom line correct	(1)	2
2(b)(i)	Background radiation would increase the count rate (by a constant amount)		2
	Or Background count rate has to be subtracted (from the activity)	(1)	1
2 (b)(ii)	Record the count for a long period of time		1
	Or Record the count more than once and find an average value	(1)	1
2(b)(iii)	Use of $\lambda t_{1/2} = \ln 2$	(1)	
	Use of $A = A_0 e^{-\lambda t}$	(1)	
	Correct time identified (65 years)	(1)	
	$A_0 = 42 \text{ Bq}$	(1)	
	Or		
	Use of $A = \frac{A_0}{2^x}$	(1)	
	Correct time identified (65 years)	(1)	
	Use of $x = \frac{t}{t_{1/2}}$	(1)	
	$A_0 = 42 \mathrm{\ Bq}$	(1)	
	Example of calculation		
	$\lambda = \frac{\ln 2}{t_{1/2}} = \frac{0.693}{12.3 \text{year}} = 0.0563 \text{year}^{-1}$		
	$A = A_0 e^{-\lambda t}$		
	$\therefore 1.08 \text{Bq} = A_0 e^{-0.0563 \text{year}^{-1} \times 65 \text{year}}$		
	$A_0 = \frac{1.08 \text{Bq}}{0.0257} = 42.1 \text{Bq}$		4
2(c)(i)	Mass difference calculation	(1)	
	Conversion to kg	(1)	
	Use of $\Delta E = c^2 \Delta m$	(1)	
	$\Delta E = 2.8 \times 10^{-12} (\text{J})$	(1)	
	Example of calculation		
	$\Delta m = (3.0155 + 2.0136) \text{ u} - (4.0015 + 1.0087) \text{ u} = 0.0189 \text{ u}$ $\Delta m = 0.0189 \text{ u} \times 1.66 \times 10^{-27} \text{ kg u}^{-1} = 3.14 \times 10^{-29} \text{ kg}$ $\Delta E = c^2 \Delta m = (3 \times 10^8 \text{ m s}^{-1}) \times 3.14 \times 10^{-29} \text{ kg} = 2.82 \times 10^{-12} \text{ J}$		4

2(c)(ii)	MAX 2		
	Very high temperatures [accept T~10 ⁷ K]	(1)	
	so that nuclei have sufficient energy to come close enough to overcome electrostatic repulsion [accept reference to strong interaction]	(1)	
	A collision rate large enough to sustain fusion (from a very high density)	(1)	2
	Total for Question		14

Question	Answer		Mark
Number	*06		
3(a)	106		
	•		
	104-		
	Red Giants		
	102-		
	7/7 1-		
	Sun Q		
	Sun		
	10-2 -		
	White Dwarfs		
	10-4-		
	40000 20000 10000 5000 2500		
	T/K		
		(1)	
(i)	Sun's position identified [single point identified]	(1)	
		(1)	
(ii)	White dwarf region Red giant region	(1)	
	Red grant region	(1)	3
*3(a)(iii	(QWC – Work must be clear and organised in a logical manner using technical		
. / .	wording where appropriate)		
	White dwarf stars have:		
	high temperature T (because λ_{max} is small)	(1)	
	low luminosity L	(1)	
	$L = \sigma A T^4$ linked to a determination of the surface area	(1)	3
	L = 0A1 miked to a determination of the surface area	, ,	
2(b)	The step engle so temporature Traditions	(1)	
3(b)	The star cools, so temperature <i>T</i> reduces The star contracts (under gravitational forces), so area <i>A</i> reduces	(1)	
	_	(1)	3
	$L = \sigma A T^4$ hence L is reduced (mark dependent upon either mp1 or mp2)	(1)	3
3(c)(i)	$^{7}_{3}\text{Li} + ^{1}_{1}\text{X} \rightarrow 2 \times ^{4}_{2}\text{He}$	(4)	
	$_{3}LI+_{1}A \rightarrow 2\times_{2}\Pi e$	(1)	
	X is a proton [Accept X is hydrogen/H]	(1)	2
	This a proton (neceptar is my drogons in)	(.,	_
3(c)(ii)	Attempt at calculation of mass difference	(1)	
~ \-/\ - /	Use of 1 MeV = 1.60×10^{-13} J	(1)	
	$\Delta E = 2.77 \times 10^{-12} (\text{J})$	(1)	3
	()	(-)	
	Example of calculation:		
	$\Delta m = 6533.8 \text{MeV/c}^2 + 938.3 \text{MeV/c}^2 - (2 \times 3727.4 \text{MeV/c}^2) = 17.3 \text{MeV/c}^2$		
	$\Delta E = 17.3 \text{MeV}$		
	$\Delta E = 17.3 \text{MeV} \times 1.60 \times 10^{-13} \text{J MeV}^{-1} = 2.768 \times 10^{-12} \text{J}$		

3(d)	Max 4		
	Extremely high temperature and density needed	(1)	
	 High temperature because nuclei need high <u>energy</u> to overcome the (electrostatic) repulsive force 	(1)	
	 Since nuclei must come very close for fusion to occur Or since nuclei must come close enough for (strong) nuclear force to act 	(1)	
	 Very high density is needed to maintain a sufficient collision rate 	(1)	
	Reference to extreme conditions leading to containment problems	(1)	4
	Total for Question		18