Question Number	Answer		Mark
1(a)(i)	Pressure and volume read from graph A	(1)	
	Conversion of temperature to kelvin	(1)	
	Use of $nV = NkT$	(1)	
	$N_{\rm c} (2.8 \pm 0.2) \times 10^{30}$	(1)	
	$N = (2.8 \pm 0.2) \times 10$	(1)	
	Example of calculation		
	$N = \frac{pV}{kT} = \frac{2.5 \times 10^5 Pa \times 0.45 \times 10^5 m^3}{1.38 \times 10^{-23} JK^{-1} \times (273 + 25)K} = 2.76 \times 10^{30}$		4
1(a)(ii)	Values read from A and B for constant pressure or constant volume		•
	Or p and V read from graph B and N used from (a)(i)	(1)	
	$T = 540 \text{ K} \text{ [}\pm 50 \text{K} \text{]} \text{ [accept answers in }^{\circ}\text{C within this range]}$	(1)	
	Example of calculation		
	$\frac{p_1}{p_2} = \frac{T_1}{T_2}$		
	$T_B = T_A \times \frac{p_B}{p_A} = (273 + 25) \text{K} \times \frac{2.8 \times 10^5 \text{ Pa}}{1.55 \times 10^5 \text{ Pa}} = 538 \text{ K}$		2
*1(b)	(QWC Spelling of technical terms must be correct and the answer must		
	be organised in a logical sequence.)		
	(Average) kinetic energy of molecules/atoms is less Or molecules/atoms		
	slower	(1)	
	Collision rate with walls of container is smaller	(1)	
	There is less momentum/impulse (exchanged) per collision Or the rate of change of momentum is less	(1)	
	Therefore a smaller force on the container walls	(1)	
	(MP4 is dependent upon MP2 or MP3)	(-)	1
	Total for Question		10

Question Number	Answer	Mark
2	Use of $pV = NkT$ (1)	
	Temperature conversion (1)	
	$\Delta N = 5.1 \times 10^{23} \tag{1}$	3
	[allow use of $pV = nRT$ and use of $N = n \times N_A$ for mp1]	
	Example of calculation: $\Delta N = \frac{V\Delta p}{kT} = \frac{0.052 \mathrm{m}^3 \times (2.0 \times 10^5 - 1.6 \times 10^5) \mathrm{Pa}}{1.38 \times 10^{-23} \mathrm{J K^{-1}}(273 + 22) \mathrm{K}} = 5.11 \times 10^{23}$	
	Total for Question	3

Question	Answer		Mark
Number 3(a)	Use of $nV - M T$	(1)	
J(a)	Disc of $p_V = NKI$ Pressure difference Or temperature conversion	(1)	
	$A_N = 5.0 \times 10^{21}$	(1)	3
	$\Delta N = 5.0 \times 10$		
	Example of calculation:		
	$\Delta N = \frac{\Delta p.V}{kT} = \frac{(6.5 \times 10^5 - 5.8 \times 10^5) \text{Pa} \times 2.9 \times 10^{-4} \text{ m}^3}{1.38 \times 10^{-23} \text{ JK}^{-1} \times (273 + 20) \text{K}} = 5.0 \times 10^{21}$		
3(b	Use of $pV = NkT$	(1)	
	$T_2 = 307$ (K) stated or implied Or 293(K) subtracted		
	$\Delta T = 14 \text{ K}$	(1)	
		(1)	3
	Example of calculation:		
	$p_1 p_2$		
	$\frac{T_1}{T_1} = \frac{T_2}{T_2}$		
	$T_2 = \frac{6.8 \times 10^5 \text{ Pa}}{6.5 \times 10^5 \text{ Pa}} \times 293 \text{ K} = 307 \text{ K}$		
	$-6.5 \times 10^{5} \text{ Pa}$		
	$\Delta T = (307 - 293) \text{ K} = 14 \text{ K}$		
3(c)	M x 3		
	(Average) <u>kinetic</u> energy of molecules/atoms is greater Or		
	molecules/atoms move faster	(1)	
	Collision rate with walls of container is greater	(1)	
	There is more momentum (exchanged) per collision Or the rate of change		
	of momentum is greater	(1)	
		(1)	3
	Therefore a greater force on the container walls	(1)	
	(dependent upon mp2 or mp3)		0
	l otal for question		9

Question	Answer	Mark
Number		
4a)	Temperature (of gas) [treat references to oil/room as neutral](1)(1)	2
	Mass of air/gas Or number of atoms/molecules/moles of air/gas	
	[accept amount of air/gas, number of particles of air/gas]	
4(b)	Assumption: idea that volume occupied by trapped air \propto length of air in	
	tube [e.g. volume = cross-sectional area \times length]	
	(1)	
	pL = a constant [accept pV = a constant] Or if p doubles, L halves (1)	
	At least 2 pairs of p, L values correctly read from graph	
	(1)	
	Readings show that $pL = 4500$ (kPa cm) [± 100 kPa cm]	4
	Or Readings show that p doubles when L is halved (1)	
	[Accept references to V instead of L]	
	Example of calculation	
	$p = 400 \text{ kPa}, L = 11.0 \text{ cm}$ $pL=400 \times 11.0 = 4400$	
	$p = 200 \text{ kPa}, L = 23.0 \text{ cm}$ $pL=200 \times 23.0 = 4600$	
4(c)	Use of $pV=NkT$ [Allow use of $pV=nRT$ and $N=n.N_A$] (1)	
	Conversion of temperature to kelvin (1) $N = 8.4 \times 10^{20}$ [A scored as service 8.1 $\times 10^{20}$ to 8.4 $\times 10^{20}$] (1)	2
	$N = 8.4 \times 10 [\text{Accept answers in range } 8.1 \times 10 \text{to } 8.4 \times 10] \tag{1}$	3
	[Answer in range but with an incorrect temperature conversion score	
	max 2]	
	Example of calculation	
	$N = \frac{450 \times 10^3 \text{Pa} \times 0.10 \text{m} \times 7.5 \times 10^{-5} \text{m}^2}{10^{-5} \text{m}^2} = 8.35 \times 10^{20}$	
	$1.38 \times 10^{-23} \mathrm{JK}^{-1} \times (273 + 20) \mathrm{K}$	
	No shares (1)	1
4(a)(l)	no change (1)	
4(d)(ii)	Similar curve (1)	
	Shifted higher Or shifted to the right (1)	2
	[an annotated diagram can score full marks]	
	Total for question	12