Question Number	Answer	Mark
1(a)(i)	Pressure and volume read from graph A Conversion of temperature to kelvin Use of $p V=\mathrm{NkT}$ $\begin{equation*} N=(2.8 \pm 0.2) \times 10^{30} \tag{1} \end{equation*}$ Example of calculation $N=\frac{p V}{k T}=\frac{2.5 \times 10^{5} \mathrm{~Pa} \times 0.45 \times 10^{5} \mathrm{~m}^{3}}{1.38 \times 10^{-23} \mathrm{JK}{ }^{-1} \times(273+25) \mathrm{K}}=2.76 \times 10^{30}$	4
1(a)(ii)	Values read from A and B for constant pressure or constant volume Or p and V read from graph B and N used from (a)(i) $\begin{equation*} T=540 \mathrm{~K}[\pm 50 \mathrm{~K}] \text { [accept answers in }{ }^{\circ} \mathrm{C} \text { within this range] } \tag{1} \end{equation*}$ Example of calculation $\begin{aligned} & \frac{p_{1}}{p_{2}}=\frac{T_{1}}{T_{2}} \\ & T_{B}=T_{A} \times \frac{p_{B}}{p_{A}}=(273+25) \mathrm{K} \times \frac{2.8 \times 10^{5} \mathrm{~Pa}}{1.55 \times 10^{5} \mathrm{~Pa}}=538 \mathrm{~K} \end{aligned}$	2
*1(b)	(QWC Spelling of technical terms must be correct and the answer must be organised in a logical sequence.) (Average) kinetic energy of molecules/atoms is less Or molecules/atoms slower Collision rate with walls of container is smaller There is less momentum/impulse (exchanged) per collision Or the rate of change of momentum is less Therefore a smaller force on the container walls (MP4 is dependent upon MP2 or MP3)	4
	Total for Question	10

Question Number	Answer	Mark
$\mathbf{2}$	Use of $p V=N \mathrm{k} T$	(1)
	Temperature conversion	(1)
	$\Delta N=5.1 \times 10^{23}$	(1)
	[allow use of $p V=n R T$ and use of $N=n \times N_{A}$ for mp1]	
	$\underline{\text { Example of calculation: }}$	
	$\Delta N=\frac{V \Delta p}{\mathrm{k} T}=\frac{0.052 \mathrm{~m}^{3} \times\left(2.0 \times 10^{5}-1.6 \times 10^{5}\right) \mathrm{Pa}}{1.38 \times 10^{-23} \mathrm{JK}^{-1}(273+22) \mathrm{K}}=5.11 \times 10^{23}$	
	Total for Question	$\mathbf{3}$

Question Number	Answer		Mark
3(a)	Use of $p V=N \mathrm{k} T$ Pressure difference Or temperature conversion $\Delta N=5.0 \times 10^{21}$ Example of calculation: $\Delta N=\frac{\Delta p . V}{k T}=\frac{\left(6.5 \times 10^{5}-5.8 \times 10^{5}\right) \mathrm{Pa} \times 2.9 \times 10^{-4} \mathrm{~m}^{3}}{1.38 \times 10^{-23} \mathrm{JK}^{-1} \times(273+20) \mathrm{K}}=5.0 \times 10^{21}$	(1) (1) (1)	3
3(b	Use of $p V=N \mathrm{k} T$ $\mathrm{T}_{2}=307(\mathrm{~K})$ stated or implied Or 293(K) subtracted $\Delta T=14 \mathrm{~K}$ Example of calculation: $\begin{aligned} & \frac{p_{1}}{T_{1}}=\frac{p_{2}}{T_{2}} \\ & T_{2}=\frac{6.8 \times 10^{5} \mathrm{~Pa}}{6.5 \times 10^{5} \mathrm{~Pa}} \times 293 \mathrm{~K}=307 \mathrm{~K} \\ & \Delta T=(307-293) \mathrm{K}=14 \mathrm{~K} \end{aligned}$	$\begin{aligned} & \hline(1) \\ & (1) \\ & (1) \end{aligned}$	3
3(c)	M x 3 (Average) kinetic energy of molecules/atoms is greater $\mathbf{O r}$ molecules/atoms move faster Collision rate with walls of container is greater There is more momentum (exchanged) per collision Or the rate of change of momentum is greater Therefore a greater force on the container walls (dependent upon mp2 or mp3)	(1) (1) (1) (1)	3
	Total for question		9

Question Number	Answer	Mark
4a)	Temperature (of gas) [treat references to oil/room as neutral] Mass of air/gas Or number of atoms/molecules/moles of air/gas [accept amount of air/gas, number of particles of air/gas]	2
4(b)	Assumption: idea that volume occupied by trapped air \propto length of air in tube [e.g. volume $=$ cross-sectional area \times length] $p L=$ a constant [accept $p V=$ a constant] Or if p doubles, L halves At least 2 pairs of p, L values correctly read from graph Readings show that $p L=4500(\mathrm{kPa} \mathrm{cm})[\pm 100 \mathrm{kPa} \mathrm{cm}]$ Or Readings show that p doubles when L is halved [Accept references to V instead of L] Example of calculation $\begin{array}{lll} p=400 \mathrm{kPa}, L=11.0 \mathrm{~cm} & p L=400 \times 11.0 & =4400 \\ p=200 \mathrm{kPa}, L=23.0 \mathrm{~cm} & p L=200 \times 23.0 & =4600 \end{array}$	4
4(c)	Use of $p V=N \mathrm{k} T \quad$ [Allow use of $\mathrm{pV}=\mathrm{nRT}$ and $\mathrm{N}=\mathrm{n} . \mathrm{N}_{\mathrm{A}}$] Conversion of temperature to kelvin $\begin{equation*} N=8.4 \times 10^{20} \text { [Accept answers in range } 8.1 \times 10^{20} \text { to } 8.4 \times 10^{20} \text {] } \tag{1} \end{equation*}$ [Answer in range but with an incorrect temperature conversion score max 2] Example of calculation $N=\frac{450 \times 10^{3} \mathrm{~Pa} \times 0.10 \mathrm{~m} \times 7.5 \times 10^{-5} \mathrm{~m}^{2}}{1.38 \times 10^{-23} \mathrm{JK}^{-1} \times(273+20) \mathrm{K}}=8.35 \times 10^{20}$	3
4(d)(i)	No change (1)	1
4(d)(ii)	Similar curve (1) Shifted higher Or shifted to the right [an annotated diagram can score full marks]	2
	Total for question	12

