1 Energy is supplied to a fixed mass of gas in a container and the absolute temperature of the gas doubles.

The mean square speed of the gas moleculesA remains constant.B increases by a factor of $\sqrt{2}$.C increases by a factor of 2 .D increases by a factor of 4 .
(Total for Question = 1 mark)

2 When the absolute temperature of an ideal gas is doubled, the internal energy of the gas changes by a factor ofA 1B $\sqrt{ } 2$C 2D 4

(Total for Question = 1 mark)

3 When an ideal gas reaches the absolute zero of temperature, the gas
\square A becomes a superfluid.B condenses to a liquid.C has maximum molecular potential energy.D exerts no pressure.

4 When energy is supplied to a substance, changes in the average molecular kinetic energy $\left(E_{\mathrm{k}}\right)$ and the average molecular potential energy $\left(E_{\mathrm{p}}\right)$ can occur.
When energy is supplied to an ideal gasA both E_{k} and E_{p} increase.B E_{k} may increase.C E_{p} may increase.D E_{k} increases but E_{p} decreases.

$$
\text { (Total for Question = } 1 \text { mark) }
$$

5 Air is a mixture of mostly nitrogen and oxygen molecules. The mass of an oxygen molecule is slightly greater than the mass of a nitrogen molecule.

On average, in a sample of air at a given temperatureA the nitrogen and oxygen molecules have the same speed.B the nitrogen molecules are travelling more slowly than the oxygen molecules.C the oxygen molecules are travelling more slowly than the nitrogen molecules.
\square D the molecules have relative speeds that depend upon the amount of each gas present.
(Total for Question = 1 mark)

6 A sealed gas jar contains a mixture of different gases. At a given temperature, the mean kinetic energy of the molecules of each gas
$\square \quad$ A depends upon how much of each gas is present.
$\square \quad \mathbf{B}$ is greater for the gas with less massive molecules.C is greater for the gas with more massive molecules.
$\square \quad \mathbf{D}$ is the same for each gas in the mixture.
(Total for Question 1 mark)

7 Samples of nitrogen gas and helium gas are at the same temperature. Compared with the helium molecules, the nitrogen molecules have

A a lower mean square speed.B the same mean square speed.
C a higher mean square speed.
D a mean square speed dependent upon the amount of each gas.
(Total for Question = 1 mark)

8 The relative masses of oxygen and hydrogen molecules are 32 and 2 respectively. For any given temperature, the ratio
root mean square speed of oxygen molecules
root mean square speed of hydrogen molecules is given by
$\square \quad \mathbf{A} \frac{1}{16}$B $\frac{1}{4}$C 4D 16

9 The average kinetic energy of the molecules in a gas is proportional to
$\square \quad$ A the number of molecules in the gas.B the specific heat capacity of the gas.C the temperature of the gas.D the total mass of the gas.

The molecules in a material may possess kinetic energy E_{k} and potential energy E_{p}.
The internal energy is equal to
$\square \mathbf{A} \quad \Sigma E_{\mathrm{k}}$B $\quad \sum E_{\mathrm{k}} \quad \sum E_{\mathrm{p}}$
C $\Sigma E_{\mathrm{k}}+\Sigma E_{\mathrm{p}}$
D ΣE_{p}

11 In the equation $n_{2}^{1} m\left\langle c^{2}\right\rangle_{2}^{3} k T$, the term $\left\langle c^{2}\right\rangle$ representsA the mean speed of the molecules.B the mean speed of the molecules squared.C the mean square speed of the molecules.D the mean velocity of the molecules.

12 The pressure exerted by an ideal gas, maintained at a constant temperature, is inversely proportional to the volume occupied by the gas.

Which of the following statements is not true?A The average molecular kinetic energy remains constant.B The gas must consist of identical molecules.C The mass of gas is fixed.D The number of molecules in the gas doesn't change.
(Total for Question 1 mark)

13 Two different sized boxes, P and Q , both contain the same number of nitrogen molecules. The molecules in box P have twice the root mean square speed of those in box Q . Which of the following must be correct?
$\square \quad$ A The density of the gas in box P is greater than that in box Q .B The mean momentum of the molecules in box P is greater than those in box Q .C The pressure exerted by the gas in box P is greater than that in box Q .D The temperature of the gas in box P is greater than that in box Q .
(Total for Question 1 mark)

14 The average kinetic energy of the molecules in an ideal gas is
A directly proportional to the square root of the absolute temperature.
\square B directly proportional to the absolute temperature.C independent of the absolute temperature.D inversely proportional to the absolute temperature.
(Total for Question = $\mathbf{1}$ mark)

15 A sample of an ideal gas at $27^{\circ} \mathrm{C}$ is placed in a sealed container. The gas is heated at constant volume to a temperature of $324^{\circ} \mathrm{C}$.
The ratio of the final pressure to the initial pressure exerted by the gas is approximately
A 1
B 2
C 4
D 12

$$
\text { (Total for Question = } 1 \text { mark) }
$$

16 Water at $100^{\circ} \mathrm{C}$ turns into steam at $100^{\circ} \mathrm{C}$.
Which of the following statements is true?A The internal energy is unchanged, but the kinetic energy of the molecules increases.B The internal energy is unchanged, but the potential energy of the molecules increases.C B oth the internal energy and the kinetic energy of the molecules increaseD B oth the internal energy and the potential energy of the molecules increase
(Total for Question = 1 mark)

17 The absolute temperature scale is a theoretical scale proposed by Lord Kelvin.
On this scale, zero is the temperature at which
A all gases become liquids.B an ideal gas would exert no pressure.C the Celsius temperature is $-373^{\circ} \mathrm{C}$.D water freezes.

