Question Number	Answer	Mark
1(a)	Use of $P = \frac{\Delta W}{\Delta W}$ (1)	
	$\Delta t \tag{1}$	
	Use of $\Delta E = mc\Delta T$	
	$\Delta T = 17 \text{ K Or } \Delta T = 17 \text{ °C} $ (1)	
	Example of calculation	
	$\Delta W = P\Delta t = 650 \mathrm{W} \times (5 \times 60) \mathrm{s} = 195000 \mathrm{J}$	
	$195000 \text{ J} = ((1.08 \text{ kg} \times 386 \text{ J} \text{ kg}^{-1} \text{ K}^{-1}) + (2.85 \text{ kg} \times 3890 \text{ J} \text{ kg}^{-1} \text{ K}^{-1}))\Delta T$	
	$\therefore \Delta T = \frac{195000 \text{ J}}{417 \text{ J K}^{-1} + 11090 \text{ J K}^{-1}} = 16.9 \text{ K}$	
		3
1(b)	Some (thermal) energy will be transferred to the surroundings (1)	
	faccent heat accent lost to the surroundings do not accent lost	
	do not accept some energy is transferred to the pan]	
	to not accept some energy is transferred to the panj	1
	Total for Question	4

Question Number	Answer				Mark		
2(a)	Either						
	Product of s	specifi	ic heat capacity and a	tomic mass check	ed	(1)	
	All 3 materi	ials ch	necked (and product a	approximately the	same)	(1)	
	Or						
	At least 2 ra	tios o	of specific heat capaci	ities calculated		(1)	
	Correspond	ing ra	tios of atomic masses	s calculated (and a	pproximately		
	equal to spe	cific l	heat capacity ratios)			(1)	
	Example of	calcu	lation				
	<u>Example of</u>	curcu	hatton				
	Meta	1	S.h.c. / J kg ⁻¹ K ⁻¹	Atomic mass /	Product of s.h.c.		
		_		u	and atomic mass		
	Alumin	um	910	27.0	24600		
	Coppe	er	386	63.5	24500		
	Silve	r	233	108	25200		2
2(b)	If statement	is co	rrect,				
	Either						
	the energy t	o rais	e temperature of 1 kg	s is proportional to	the number of atoms	in (1)	
	1 kg						
	Number of	atoms	s in 1 kg = 1/atomic n	nass		(1)	
	Or The larger the atomic mass the fewer the number of atoms in unit mass of material (1) The fewer the number of atoms, the less energy needed to increase the						
	temperature by unit amount (1)				(1)		
	If no other mark awarded, allow 1 mark for either a description of what						1
	internal energy is or a description of what specific heat capacity is.					1	
						2	
	Total for Q	uesti	on				4

Question Number	Answer	Mark
3(a)	Idea that internal energy is the sum of	
	(Total) kinetic energy and potential energy (1)	2
	of molecules/atoms	2
3(b)(i)	Use of $\Delta E = mc\Delta\theta$ (1)	
	$\Delta E = 8100 \text{ (J)} \tag{1}$	2
	Example of calculation:	
	$\Delta E = mc\Delta\theta = 175 \times 10^{-3} \text{ kg} \times 4200 \text{ J} \text{ kg}^{-1} \text{ K}^{-1} \times (85 - 74) \text{ K} = 8090 \text{ J}$	
3(b)(ii)	Use of ΔE value from (i) in $\Delta E = mc\Delta\theta$ (1)	
	m = 0.030 kg (1)	
	(1) No energy transferred to surroundings Or all energy transferred from tea used to heat milk	3
	Example of calculation:	
	$\Delta E = mc\Delta\theta$	
	$8100 \mathrm{J} = m \times 3900 \mathrm{J} \mathrm{kg}^{-1} \mathrm{K}^{-1} \times (74 - 4.5) \mathrm{K}$	
	$\therefore m = \frac{8100 \text{ J}}{3900 \text{ J} \text{ kg}^{-1} \text{ K}^{-1} \times 69.5 \text{ K}} = 0.0299 \text{ kg}$	
	Total for question	7
	Total for question	1

Question Number	Answer		Mark
4(a)	Use of electrical power equation e.g. $\mathbf{R} = 8.8 \Omega$	(1) (1)	2
	[Use of V=IR and P=VI gains mp1]		
	Example of calculation $R = \frac{(230V)^2}{6000W} = 8.82\Omega$		
4(b)	See 30 K [30 °C] Or 6000 J s ⁻¹	(1)	
	Use of $\Delta E = mc\Delta\theta$ [Do not penalise wrong temperature conversions, but $\Delta\theta$ must be a temperature difference]	(1)	
	$\frac{\Delta m}{\Delta t} = 0.048 \mathrm{kg}\mathrm{s}^{-1}$		
	[accept 0.048 litre s ⁻¹ and other volume flow rates with correct units]	(1)	3
	$\Delta \theta = (37.5 - 7.5) ^{\circ}\text{C} = 30 ^{\circ}\text{C}$ $\Delta m \qquad 6000 ^{\circ}\text{W} \qquad 0.0476 ^{\circ}\text{km} ^{-1}$		
	$\frac{\Delta t}{\Delta t} = \frac{1}{4200 \mathrm{J}\mathrm{kg}^{-1}\mathrm{K}^{-1} \times 30\mathrm{K}} = 0.0476\mathrm{kg}\mathrm{s}$		
	Total for question		5

Question	Answer	Mark
Nulliber		-
5(a)	Use of $\Delta E = mc\Delta\theta$ (1)	
	Energy = 780 J (1)	2
	Example of calculation	
	$\Delta E = 34 \times 10^{-3} \text{ kg} \times 490 \text{ J} \text{ kg}^{-1} \text{ K}^{-1} \times (100 - 53) \text{ K} = 783 \text{ J}$	
5(b)		
	Heat / thermal energy is transferred from the sphere to the wax (1)	
	Idea that the lead sphere has insufficient energy for melting the way	
	(a g The lead sphere transfers less heat / thermal energy (than the steel sphere) (1)	2
	(c). The read sphere transfers less hear / thermal energy (that the steer sphere). (1)	4
	Credit a supporting calculation)	
	Total for question	4

Question	Answer	Mark
Number		
6 (a)	Use of $P=IV$ (1)	
	I = 9.1 A (1)	2
	Example of calculation	
	P 2100 W	
	$I = \frac{1}{V} = \frac{1}{230 \text{ V}} = 9.13 \text{ A}$	
6 (b)(i)	Use of $\Delta E = mc\Delta\theta$ (for $t = 1s$) (1)	
	$\theta = 51^{\circ} \text{C or } 324 \text{ K} \tag{1}$	2
	Example of calculation	
	ΔE 2100]	
	$\Delta \theta = \frac{1}{mc} = \frac{1}{0.068 \text{ kg} \times 10101 \text{ kg}^{-1} \text{ °C}^{-1}} = 30.6 \text{ °C}$	
	$A = 30.6 \pm 20 = 50.6 ^{\circ}\text{C}$	
	U = 50.0 + 20 = 50.0 C	
6(b)(ii)	Thermal energy (is transferred) to \underline{air} (molecules) (1)	
	Kinetic energy $[E_k]$ of (air) molecules is increased (1)	2
	Total for question	6

Question Number	Answer	Mark
7(a)	Use of $\Delta E = mc\Delta\theta$ (1) Energy transferred = 2.8×10^6 J (1)	2
	Example of calculation $\Delta \theta = (60 - 15) = 45 ^{\circ}\text{C}$ $E = mc\Delta \theta = 15 \text{kg} \times 4200 \text{J} \text{kg}^{-1} \text{K}^{-1} \times 45 \text{K} = 2.84 \times 10^{6} \text{J}$	
7 (b)(i)	Use of $P = \frac{\Delta W}{\Delta t}$ (1)	
	Time = 1100 s (1)	2
	(Allow answers that use ΔW in range 2.5 MJ \rightarrow 3.4 MJ. t = 1200s if 3MJ used and 1000s to 1360 s for allowed range,)	
	$\frac{\text{Example of calculation}}{\Delta t = \frac{\Delta W}{P} = \frac{2.84 \times 10^6 \text{ J}}{2500 \text{ W}} = 1136 \text{ s} \approx 1100 \text{ s}$	
7 (b)(ii)	Idea that all energy supplied results in a rise in temperature(1)[e.g. only water heated up Or no energy transferred to surroundings etc](1)	1
7(c)	Use of $P = IV$ Current = 11A (1) (1)	2
	Example of calculation $I = \frac{P}{V} = \frac{2500 \text{ W}}{230 \text{ V}} = 10.9 \text{ A}$	
	Total for question	7