Question Number	Answer	Mark
1(a)	Use of $P=\frac{\Delta W}{\Delta t}$ Use of $\Delta E=m c \Delta T$ $\begin{equation*} \Delta T=17 \mathrm{~K} \text { Or } \Delta T=17^{\circ} \mathrm{C} \tag{1} \end{equation*}$ Example of calculation $\begin{aligned} & \Delta W=P \Delta t=650 \mathrm{~W} \times(5 \times 60) \mathrm{s}=195000 \mathrm{~J} \\ & 195000 \mathrm{~J}=\left(\left(1.08 \mathrm{~kg} \times 386 \mathrm{~J} \mathrm{~kg}^{-1} \mathrm{~K}^{-1}\right)+\left(2.85 \mathrm{~kg} \times 3890 \mathrm{~J} \mathrm{~kg}^{-1} \mathrm{~K}^{-1}\right)\right) \Delta T \\ & \therefore \Delta T=\frac{195000 \mathrm{~J}}{417 \mathrm{~J} \mathrm{~K}^{-1}+11090 \mathrm{~J} \mathrm{~K}^{-1}}=16.9 \mathrm{~K} \end{aligned}$	3
1(b)	Some (thermal) energy will be transferred to the surroundings [accept heat, accept lost to the surroundings, do not accept lost, do not accept some energy is transferred to the pan]	1
	Total for Question	4

$\left.\begin{array}{|l|l|l|l|l|}\hline \begin{array}{l}\text { Question } \\ \text { Number }\end{array} & \text { Answer } & \text { Mark } \\ \hline \text { 2(a) } & \begin{array}{l}\text { Either } \\ \text { Product of specific heat capacity and atomic mass checked } \\ \text { All } 3 \text { materials checked (and product approximately the same) } \\ \text { Or } \\ \text { At least } 2 \text { ratios of specific heat capacities calculated } \\ \text { Corresponding ratios of atomic masses calculated (and approximately } \\ \text { equal to specific heat capacity ratios) } \\ \text { Example of calculation }\end{array} & \begin{array}{l}\text { (1) }\end{array} & \text { (1) }\end{array}\right\}$

Question Number	Answer		Mark
3(a)	Idea that internal energy is the sum of (Total) kinetic energy and potential energy of molecules/atoms	$\begin{aligned} & \text { (1) } \\ & \text { (1) } \end{aligned}$	2
3(b)(i)	Use of $\Delta E=m c \Delta \theta$ $\Delta E=8100(\mathrm{~J})$ Example of calculation: $\Delta E=m c \Delta \theta=175 \times 10^{-3} \mathrm{~kg} \times 4200 \mathrm{~J} \mathrm{~kg}^{-1} \mathrm{~K}^{-1} \times(85-74) \mathrm{K}=8090 \mathrm{~J}$	$\begin{aligned} & \mathbf{(1)} \\ & \mathbf{(1)} \end{aligned}$	2
3(b)(ii)	Use of $\Delta \mathrm{E}$ value from (i) in $\Delta E=m c \Delta \theta$ $m=0.030 \mathrm{~kg}$ No energy transferred to surroundings Or all energy transferred from tea used to heat milk Example of calculation: $\begin{aligned} & \Delta E=m c \Delta \theta \\ & 8100 \mathrm{~J}=m \times 3900 \mathrm{~J} \mathrm{~kg}^{-1} \mathrm{~K}^{-1} \times(74-4.5) \mathrm{K} \\ & \therefore \mathrm{~m}=\frac{8100 \mathrm{~J}}{3900 \mathrm{~J} \mathrm{~kg}^{-1} \mathrm{~K}^{-1} \times 69.5 \mathrm{~K}}=0.0299 \mathrm{~kg} \end{aligned}$	(1) (1) (1)	3
	Total for question		7

Question Number	Answer	Mark
4(a)	Use of electrical power equation e.g. $8=\frac{10}{8}$ $\begin{equation*} \mathrm{R}=8.8 \Omega \tag{1} \end{equation*}$ [Use of $\mathrm{V}=\mathrm{IR}$ and $\mathrm{P}=\mathrm{VI}$ gains mp1] Example of calculation $R=\frac{(230 \mathrm{~V})^{2}}{6000 \mathrm{~W}}=8.82 \Omega$	2
4(b)	See $30 \mathrm{~K}\left[30^{\circ} \mathrm{C}\right]$ Or $6000 \mathrm{~J} \mathrm{~s}^{-1}$ Use of $\Delta \mathrm{E}=\mathrm{mc} \Delta \theta$ [Do not penalise wrong temperature conversions, but $\Delta \theta$ must be a temperature difference] $\begin{equation*} \frac{\Delta m}{\Delta t}=0.048 \mathrm{~kg} \mathrm{~s}^{-1} \tag{1} \end{equation*}$ [accept 0.048 litre s $^{-1}$ and other volume flow rates with correct units] Example of calculation $\begin{aligned} & \Delta \theta=(37.5-7.5)^{\circ} \mathrm{C}=30{ }^{\circ} \mathrm{C} \\ & \frac{\Delta m}{\Delta t}=\frac{6000 \mathrm{~W}}{4200 \mathrm{Jkg}^{-1} \mathrm{~K}^{-1} \times 30 \mathrm{~K}}=0.0476 \mathrm{~kg} \mathrm{~s}^{-1} \end{aligned}$	3
	Total for question	5

Question Number	Answer	Mark
$\mathbf{5 (a)}$	Use of $\Delta E=m c \Delta \theta$ Energy $=780 \mathrm{~J}$ Example of calculation $\Delta E=34 \times 10^{-3} \mathrm{~kg} \times 490 \mathrm{~J} \mathrm{~kg}^{-1} \mathrm{~K}^{-1} \times(100-53) \mathrm{K}=783 \mathrm{~J}$	(1) (1)
$\mathbf{5 (b)}$	Heat / thermal energy is transferred from the sphere to the wax Idea that the lead sphere has insufficient energy for melting the wax (e.g. The lead sphere transfers less heat / thermal energy (than the steel sphere). Credit a supporting calculation)	(1)

Question Number	Answer		Mark
6(a)	$\begin{aligned} & \text { Use of } P=I V \\ & I=9.1 \mathrm{~A} \end{aligned}$ Example of calculation $I=\frac{P}{V}=\frac{2100 \mathrm{~W}}{230 \mathrm{~V}}=9.13 \mathrm{~A}$	(1) (1)	2
6(b) (i)	Use of $\Delta E=m c \Delta \theta$ (for $t=1 \mathrm{~s}$) $\theta=51^{\circ} \mathrm{C}$ or 324 K Example of calculation $\begin{aligned} & \Delta \theta=\frac{\Delta E}{m 2 c}=\frac{2100 \mathrm{~J}}{0.068 \mathrm{~kg} \times 1010 \mathrm{~J} \mathrm{~kg}^{-1}{ }^{\circ} \mathrm{C}^{-1}}=30.6^{\circ} \mathrm{C} \\ & \theta=30.6+20=50.6^{\circ} \mathrm{C} \end{aligned}$	(1) (1)	2
6(b)(ii)	Thermal energy (is transferred) to air (molecules) Kinetic energy $\left[\mathrm{E}_{\mathrm{k}}\right]$ of (air) molecules is increased	(1) (1)	2
	Total for question		6

Question Number	Answer	Mark
7(a)	Use of $\Delta E=m c \Delta \theta$ Energy transferred $=2.8 \times 10^{6} \mathrm{~J}$ Example of calculation $\begin{aligned} & \Delta \theta=(60-15)=45^{\circ} \mathrm{C} \\ & E=m c \Delta \theta=15 \mathrm{~kg} \times 4200 \mathrm{~J} \mathrm{~kg}^{-1} \mathrm{~K}^{-1} \times 45 \mathrm{~K}=2.84 \times 10^{6} \mathrm{~J} \end{aligned}$	2
7 (b)(i)	Use of $P=\frac{\Delta W}{\Delta t}$ $\begin{equation*} \text { Time }=1100 \mathrm{~s} \tag{1} \end{equation*}$ (Allow answers that use $\Delta \mathrm{W}$ in range $2.5 \mathrm{MJ} \rightarrow 3.4 \mathrm{MJ}$. $\mathrm{t}=1200 \mathrm{~s}$ if 3 MJ used and 1000 s to 1360 s for allowed range,) Example of calculation $\Delta t=\frac{\Delta W}{P}=\frac{2.84 \times 10^{6} \mathrm{~J}}{2500 \mathrm{~W}}=1136 \mathrm{~s} \approx 1100 \mathrm{~s}$	2
7 (b)(ii)	Idea that all energy supplied results in a rise in temperature [e.g. only water heated up $\mathbf{O r}$ no energy transferred to surroundings etc]	1
7(c)	Use of $P=I V$ Current $=11 \mathrm{~A}$ Example of calculation $I=\frac{P}{V}=\frac{2500 \mathrm{~W}}{230 \mathrm{~V}}=10.9 \mathrm{~A}$	2
	Total for question	7

