Questions on Particle Physics MS

1. Charge on strange quark = -1/3 (1) 1 Conservation law: Charge $-(-1) + (+1) \rightarrow (0) + X/by$ charge conservation (1) X is neutral (1) 2 Particle X is a meson (1) Baryon number conservation $(0) + (+1) \rightarrow (+1) + (0)$ (1) 2 OR discussion in terms of total number of $q + \overline{q} = 5$ OR $\Sigma q - \overline{q} = 3$ Composition of X is $s \overline{d} = [0/3 \text{ if not } q \overline{q}](1)$ Justify S quark: This is not a weak interaction/only a weak interaction can change quark type/this is a strong interaction/strangeness is conserved/ quark flavour cannot change (1) Justify \overline{d} quark: X neutral; s - 1/3; $\overline{d} + 1/3$. [e.c.f. if s = -1/3 in first line.] For the third mark accept any $q \overline{q}$ pair that creates a meson 3 of the charge deduced for X above. (1) [The justification for both q and \bar{q} can be done also by tracking individual quarks] [8] 2. Gluon Weak Electromagnetic Gravitational Gravitational circled [5] 3. Ω - is a baryon [no mark] p is a baryon/need to conserve baryon number Strangeness -3 needs three quarks 2 p is uud Ω - is sss All Ks quark-antiquark pairs K- is us K+ is us K0 is ds [all right] 4 [6] 4. Lots of energy needed (a) to produce the extra mass 2 Conservation laws: (b) charge lepton number baryon number 3 (c) They annihilate one another giving rise to γ ray/ γ photon

Energy of γ ray

= 2(0.00055) (930 MeV)

= 1.0/1.02/1.023 MeV

4

[9]

5. How properties of particles and antiparticles compare

Same mass/properties, opposite charge (1)

1

Energy

$$E = mc^2 = 1.67 \times 10^{-27} \times (3 \times 10^8)^2 \text{ J } [m \text{ or } c \text{ subbed correctly}]$$
 (1)

=
$$1.503 \times 10^{-10}$$
 J [u.e. if comparison made here]

=
$$1.503 \times 10^{-10}/10^9 \times 1.6 \times 10^{-19} \text{ GeV (1)}$$

$$= 0.94 \text{ GeV } (1)$$

3

[jump to " $\approx 1 \text{ GeV}$ " omitting last line scores (1)(1)x]

Survival of anti-atom

Anti-proton meets proton OR positron meets electron OR (anti-atom) meets atom (1)

(leads to) annihilation (1)

2

<u>Table</u>

	Meson	Baryon	Lepton	
proton		✓		(1)
antiproton		✓		
electron			✓	(1)
positron			✓	

Quark structure

Antiproton: $2 \times -2/3$ (anti u) + $1 \times + 1/3$ (anti d) (1)

$$=-1$$
 (e not needed) (1)

$$[3 \times d \Rightarrow -1 \text{ scores } \times \times]$$

[10]

6. Explanation

energy gained by electron accelerated through 1 V/W = QV(1)

$$W = 1.6 \times 10^{-19} \text{ C} \times 1 \text{ V} = 1.6 \times 10^{-19} \text{ J}$$
 (1)

2

2

Unit of mass

$$\Delta E = c^2 \Delta m$$
 so $\Delta m = \Delta E/c^2$ (1)

GeV is energy
$$\Rightarrow$$
 GeV/ c^2 is mass (1)

2

Mass of Higgs boson

$$m = 115 \times [10^9] \times 1.6 \times 10^{-19} / (3 \times 10^8)^2$$
 (1)

$$= 2.04 \times 10^{-25} \text{ kg (1)}$$

2

Antiparticle

Same mass and opposite charge (1)

[Accept Particle and its antiparticle annihilate $(\rightarrow photons)$]

1

```
Force deflects particles/force produces circular motion (1)
Force is perpendicular to motion/force provides centripetal force (1)
r is large or curvature is small/gentle (1)
reference to B = p/rQ to show why small B is needed (1)
                                                                                                     [11]
"The standard model"
Everyday matter/atoms: p,n, e [maybe in two places] (1)
Protons / neutrons are made from quarks (1)
p: uud and n:udd (1)
show charge of either [p: u(+2/3) u(+2/3) d(-1/3) \Rightarrow +1 OR n: u
(+2/3) d(-1/3) d(-1/3) \Rightarrow 0 (1)
All baryons have three quarks (1)
Hadrons contain quarks (1)
Electron is fundamental/leptons are fundamental (1)
Electron-neutrino created during β-decay (1)
                                                                                     Max 6
                                                                                                      [6]
Description of production of a beam of electrons
Hot filament / cathode /plate (1)
Thermionic emission (1)
Anode/other electrode positive wrt source (can be dia) (1)
Collimator/hole/focusing detail (1)
Control of beam (e.g. with E or B (1))
Vacuum (1)
Cyclotron:
Magnetic field →circles (1)
Acceleration across gap (1)
Repeated accelerations / details of voltage variation (1)
LINAC:
At least 2 sections connected to a.c. (1)
Details of variation of voltage with time / synchronisation (1)
Acceleration across each gap / attraction to + section (1)
Detail of lengths of tubes (1)
                                                                                     Max 6
High energy needed to break particles into constituents and/or create new particles (1)
High energy linked to short wavelength, e.g. \lambda = h/p (1)
Short wavelength comparable to dimensions of structures / mention of diffraction (1)
Electrons easily detected because charged (1)
High energy needed to get close to nuclei (1)
                                                                                     Max 3
                                                                                                 [Max 7]
```

Explanation of need for a magnetic field and why it can be small

PhysicsAndMathsTutor.com

7.

8.