<table>
<thead>
<tr>
<th>Question Number</th>
<th>Answer</th>
<th>Mark</th>
</tr>
</thead>
<tbody>
<tr>
<td>1(a)(i)</td>
<td>(Magnetic) flux linkage
Weber /Wb (accept T m²)</td>
<td>2</td>
</tr>
<tr>
<td>1(a)(ii)</td>
<td>The (induced) e.m.f is such as to oppose the change creating it</td>
<td></td>
</tr>
<tr>
<td>*1(b)(i)</td>
<td>QWC – work must be clear and organised in a logical manner using
technical terminology where appropriate
There is a changing flux (linkage) Or magnetic field lines are cut by the coil Inducing an e.m.f. (across the coil) There is a current since there is a closed circuit</td>
<td>3</td>
</tr>
<tr>
<td>1(b)(ii)</td>
<td>The rate of change of flux changes
as speed changes Or because flux density at coil changes with distance (MP2 dependent on MP1)</td>
<td>2</td>
</tr>
<tr>
<td>1(b)(iii)</td>
<td>More readings in a short time Or increased sampling rate</td>
<td>1</td>
</tr>
<tr>
<td>Total for question</td>
<td></td>
<td>9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Question Number</th>
<th>Answer</th>
<th>Mark</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Arrow added to diagram downwards on or near the copper rod
An indication that the field is at right angles to the page or copper rod Magnetic field into page (Upward arrow for current →magnetic field out of page. If no arrow on rod MP2 &3 can still be scored)</td>
<td>3</td>
</tr>
<tr>
<td>Total for question</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Question Number</td>
<td>Answer</td>
<td>Mark</td>
</tr>
<tr>
<td>-----------------</td>
<td>--------</td>
<td>------</td>
</tr>
<tr>
<td>3(a)</td>
<td>The induced e.m.f. is equal/proportional to the rate of change of (magnetic) flux (linkage). Or $\varepsilon = (-) \frac{d(N\Phi)}{\Delta t}$ with symbols defined.</td>
<td>1</td>
</tr>
<tr>
<td>3(b)</td>
<td>(QWC – Work must be clear and organised in a logical manner using technical wording where appropriate) The idea that due to the magnet moving there is a changing field around the ring. An e.m.f. induced (in a closed circuit hence a current flows). Change in direction of magnet, changes the direction of e.m.f./current. Magnitude of e.m.f. (and current) depends on the rate of change of flux linkage Or magnitude of e.m.f. (and current) depends on position/speed of magnet.</td>
<td>1</td>
</tr>
<tr>
<td>3(c)</td>
<td>Use of area $A = \pi r^2$. Use of $\varepsilon = BA/t$. Use of $I = V/R$. $I= 4.1$ A (accept 4.1 – 4.2 A depending on where rounding is done). (candidates who use a circumference instead of an area can only score MP3) Example of calculation: Area of coil $= \pi \times (0.05 \text{ m})^2 = 7.9 \times 10^{-3} \text{ m}^2$ $\varepsilon = BA/t = 0.035 \text{ T s}^{-1} \times 7.9 \times 10^{-3} \text{ m}^2 = 2.8 \times 10^{-4} \text{ V}$ $I = \varepsilon/R = 2.8 \times 10^{-4} \text{ V} / 6.7 \times 10^{-5} \Omega$ $I= 4.1$ A</td>
<td>1</td>
</tr>
</tbody>
</table>

Total for question: 10
<table>
<thead>
<tr>
<th>Question Number</th>
<th>Answer</th>
<th>Mark</th>
</tr>
</thead>
</table>
| **4(a)(i)** | **Max 2**
Inconsistent number of significant figures or decimal places
Or results recorded to different precision /resolution
No repeat readings
More readings needed up to 1.5 cm | (1)
(1)
(1)
2 |
| **4(a)(ii)(1)** | Attempt to use \(Vr=\text{constant}\)
Correctly finds two values of \(Vr\) from values in table and makes comment
Or uses \(Vr\) value with another \(r\) or \(V\) to confirm corresponding value and makes comment | (1)
2 |

Example of calculation

<table>
<thead>
<tr>
<th>(r/\text{cm})</th>
<th>(V/\text{V})</th>
<th>(rV/\text{cmV})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>0.725</td>
<td>0.725</td>
</tr>
<tr>
<td>1.5</td>
<td>0.483</td>
<td>0.725</td>
</tr>
<tr>
<td>2.0</td>
<td>0.363</td>
<td>0.726</td>
</tr>
<tr>
<td>2.5</td>
<td>0.29</td>
<td>0.725</td>
</tr>
<tr>
<td>3.0</td>
<td>0.242</td>
<td>0.726</td>
</tr>
<tr>
<td>3.5</td>
<td>0.21</td>
<td>0.735</td>
</tr>
<tr>
<td>4(a)(ii)(2)</td>
<td>The graph would be a straight line graph through the origin. (accept a sketch of a straight line graph going through the origin graph)</td>
<td>(1) 1</td>
</tr>
</tbody>
</table>
| **4(b)(i)** | An e.m.f. is (induced) when there is a changing (magnetic) field/flux.
Because the \(\text{current}\) is constant there is a constant magnetic field. Or Because the \(\text{current}\) is constant there isn’t a changing magnetic field. | (1)
2 |
| **4(b)(ii)** | Movement of either the coil or the wire
Use an alternating current/signal/supply/AC
Switch the current on/off Or change current e.g. use of variable resistor | (1)
(1)
(1) 3 |

Total for question 10
<table>
<thead>
<tr>
<th>Question Number</th>
<th>Answer</th>
<th>Mark</th>
</tr>
</thead>
<tbody>
<tr>
<td>*5(a)</td>
<td>(QWC – Work must be clear and organised in a logical manner using technical wording where appropriate)
 A clear statement that an alternating/changing current produces an alternating/changing magnetic field/flux
 Reference to the iron core becomes magnetised Or increases magnetic field
 the idea that the field produced in the core/wire is linked to the coil
 *(e.m.f. produced) due to EM induction Or reference to induced e.m.f. Or Faraday's law in words (do not accept induced current/voltage on its own)
 [be careful not to credit the random use of words/phrases like, there is flux linkage, flux cutting takes place or the field lines are cut by the coil. Also watch out for candidates who think there is a current in the coil creating the flux linkage]</td>
<td>4</td>
</tr>
<tr>
<td>5(b)</td>
<td>(Constant current means) no change of flux (linkage) Or no changing (magnetic) field Or flux/field is constant [do not credit 'flux won't be changing direction' or 'no flux linkage being cut' or alternating]</td>
<td>1</td>
</tr>
<tr>
<td>5(c)</td>
<td>More than one wire in cable
 cable carries current in both directions Or Magnetic fields will cancel</td>
<td>2</td>
</tr>
<tr>
<td>5(d)(i)</td>
<td>The larger the current the greater the (magnetic) flux/field (produced) Or the larger the change in current the larger the change in the (magnetic) flux/field
 gives a greater rate of change of flux Or bigger change in flux in the same time Or a greater (induced) e.m.f./voltage/reading</td>
<td>2</td>
</tr>
<tr>
<td>5(d)(ii)</td>
<td>the idea that frequency changes the value of (induced) e.m.f/voltage/reading Or the idea that the frequency changes the rate of change of (magnetic) flux
 An understanding that there are now two factors (current and frequency) altering (induced) e.m.f/voltage/reading.</td>
<td>2</td>
</tr>
<tr>
<td>Total for question</td>
<td></td>
<td>11</td>
</tr>
<tr>
<td>Question Number</td>
<td>Answer</td>
<td>Mark</td>
</tr>
<tr>
<td>-----------------</td>
<td>---</td>
<td>------</td>
</tr>
</tbody>
</table>
| 6(a)(i) | (QWC – Work must be clear and organised in a logical manner using technical wording where appropriate
there is a magnetic field in stator/(iron) core Or the core becomes an electromagnet
This field/flux is changing (due to the AC input)
B field (from the stator) passes through the rotor
(the changing magnetic flux/field leads to an) induced emf/pd | (1) 4 |
| 6(a)(ii) | Rotor experiences a force Or mention of FLHR Or *F* = *B*Il
Due to the current in the rotor being in a magnetic field Or rotor becomes a magnet | (1) 2 |
| 6(a)(iii) | **Max 2**
Increase frequency (of current)
Increase (magnitude of) current
Add more turns (to either coil) | (1) 2 |
| 6(b)(i) | *(T* = 60/33(1.82 s) Or *f* = 33/60 (0.55 s⁻¹))
Use of *ω* = 2π/T Or *w* = 2π/*f*
ω = 3.5 rad s⁻¹ Or use of *ω* = 3.5 rad s⁻¹ | (1) 3 |
| | [11.4 rad s⁻¹ scores 1; 3.2 x 10⁻³ rad s⁻¹ scores 1; 11π/10 rad s⁻¹ scores 2]
Example of calculation
ω = (33 × 2π)/ 60 s
ω = 3.5 rad s⁻¹ | |
| 6(b)(ii) | Use of *a* = *ro*²
a = 1.5 ms⁻² [allow ecf from (b)(i)]
[11.4 rad s⁻¹ gives 16 m s⁻²]
Example of calculation
a = (0.125 m) × (3.5 rad s⁻¹)²
a = 1.5 m s⁻² | (1) 2 |
<p>| Total for question | | 13 |</p>
<table>
<thead>
<tr>
<th>Question Number</th>
<th>Answer</th>
<th>Mark</th>
</tr>
</thead>
<tbody>
<tr>
<td>7(a)</td>
<td>(Magnetic) Flux linkage</td>
<td>(1)</td>
</tr>
</tbody>
</table>
| 7(b) | QWC (i and iii) - spelling of technical terms must be correct and the answer must be organised in a logical sequence

- Lenz’s law / conservation of energy
- induced current/emf (direction)
- Opposes the change (that produced it) | (1) |

Total for question 5