Wave Properties and Stationary Waves (MCQ Only)

Q1.

A string is held under tension. When it is plucked it vibrates with a frequency f.

Which of the following would result in a lower value for f?

- A decreasing the cross-sectional area of the string
- **B** decreasing the density of the material of the string
- C increasing the length of the string
- **D** increasing the tension

(Total for question = 1 mark)

Q2.

A displacement-time graph is shown for a particle in a transverse wave.

Which property of the wave **cannot** be determined directly from the displacement-time graph?

A amplitude

- C time period
- D wavelength

Q3.

A longitudinal wave is represented on a displacement-distance graph. A positive displacement on the graph indicates a displacement to the right.

Which graph shows the correct labelling of possible positions of a compression, C, and a rarefaction, R?

Q4.

The speed *v* of a transverse wave on a string is given by

$$v = \sqrt{\frac{T}{\mu}}$$

where μ is the mass per unit length of the string and T is the tension in the string.

A fixed length L of string is connected to a vibration generator and held under tension T as shown. The frequency of the vibration generator is varied until, at a frequency f, a standing wave with one antinode is observed. T is increased and the procedure is repeated.

Which of the following describes the variation in f as T increases?

- A decreases linearly
- B decreases non-linearly
- C increases linearly
- D increases non-linearly

(Total for question = 1 mark)

Q5.

Displacement-time graphs are shown for two waves, each of frequency f and period T.

(1)

The phase difference in radians between the two waves is given by

$$\square \mathbf{A} \frac{2\pi t}{T}$$
$$\square \mathbf{B} \frac{\pi t}{T}$$
$$\square \mathbf{C} \frac{2\pi t}{f}$$
$$\square \mathbf{D} \frac{\pi t}{f}$$

(Total for question = 1 mark)

Q6.

This question refers to an experiment to investigate stationary waves on a string.

Corresponding values of v^2 against *T* are plotted. A straight line graph is obtained, as shown.

Which of the following expressions for the mass per unit length μ of the string is correct?

A
$$\mu = \text{gradient}$$

B $\mu = \sqrt{\text{gradient}}$
C $\mu = \frac{1}{\text{gradient}}$
 $\mu = \frac{1}{\sqrt{\text{gradient}}}$

Q7.

A beam of light from a torch with power P is shone onto a surface. The light is spread over a circular area with a radius r.

Which of the following gives the intensity of the light on the surface?

(Total for question = 1 mark)

Q8.

The diagram shows the position of two particles, X and Y, on a transverse wave. The wave is travelling from left to right.

Which of the following describes the directions in which the particles at X and Y are moving at the instant shown?

		Particle X	Particle Y
×	A	down	down
×	В	down	up
×	С	up	down
×	D	up	up

Q9.

Which of the following wave properties demonstrates that electromagnetic waves must be transverse?

- A diffraction
- **B** interference
- C polarisation
- D refraction

(Total for question = 1 mark)

Q10.

Which of the following statements about standing waves is not true?

- A Particles between adjacent nodes oscillate with varying amplitudes.
- **B** Particles between adjacent nodes are moving in phase with each other.
- **C** Particles immediately either side of a node are moving in opposite directions.
- **D** Particles undergo no disturbance at an antinode.

Q11.

Three polarising filters X, Y and Z, are placed in front of a source of unpolarised light. The planes of polarisation of the filters are initially parallel.

Filter Y is rotated by 45° as shown.

Filter Z is then rotated clockwise and the intensity of light emerging from Z is measured.

Which angle of rotation of Z will result in the lowest intensity of light?

- 🖾 A 90°
- 🖾 **B** 135°
- 🖸 **C** 180°
- 🖸 **D** 225°

(Total for question = 1 mark)

Q12.

The speed *v* of a transverse wave on a string is given by

$$v = \sqrt{\frac{T}{\mu}}$$

where μ is the mass per unit length of the string and T is the tension in the string.

 μ can be calculated from measurements of the mass and length of the string.

The percentage uncertainty in the measurement of mass is 0.4%. The percentage uncertainty in the measurement of length is 0.05%.

Which of the following is the percentage uncertainty in the calculated value for μ ?

■ A 0.4 + 0.05

- B 0.4 0.05
- □ **C** 0.4 × 0.05
- □ **D** 0.4 ÷ 0.05

Q13.

A two-beam oscilloscope is used to display signals from two microphones as shown.

Which of the following could be the phase difference in radians between the traces?

(Total for question = 1 mark)

Q14.

The graph shows the variation of displacement with time for two waves.

What is the phase difference between these two waves?

- 🖾 A 6 ms
- **B** 0.20 cm
- \square C π radians
- D 90 degrees

(Total for question = 1 mark)

(1)

Q15.

A source of unpolarised light is viewed through two crossed polarising filters X and Y.

Which row in the table correctly describes the light emerging from the two filters?

(1)

		Light emerging from filter X	Light emerging from filter Y
\times	A	oscillates in every direction	oscillates in one direction
\times	B	oscillates in every direction	no light
X	С	oscillates in one direction	oscillates in one direction
×	D	oscillates in one direction	no light

(Total for question = 1 mark)

Q16.

Which of the following statements about waves is not correct?

- A An unpolarised wave may be polarised on reflection from a surface.
- **B** Longitudinal waves cannot be plane polarised.
- **C** The vibrations in an unpolarised wave are in many directions.
- **D** Transverse waves are always plane polarised.

Q17.

This questions refers to an experiment to investigate stationary waves on a string.

A string of length *I*, fixed at both ends, is placed under tension T and plucked. The fundamental frequency f of the vibrating string is measured and the speed v of the wave on the string is calculated.

Which of the following gives the speed of the wave?

(Total for question = 1 mark)

Q18.

Two waves have the same amplitude and are travelling in the same medium.

The two waves can produce a standing wave if they

- A have different frequencies and travel in opposite directions.
- **B** have different frequencies and travel in the same direction.
- **C** have the same frequency and travel in opposite directions.
- **D** have the same frequency and travel in the same direction.

Q19.

The diagram represents an arrangement used to generate standing waves on a string.

A standing wave pattern with two nodes is obtained as shown.

Which of the following single changes could produce a standing wave pattern with three nodes?

- A decreasing the distance between the vibration generator and pulley
- **B** decreasing the frequency of the vibration generator
- C decreasing the mass on the mass hanger
- D decreasing the mass per unit length of the string

(Total for question = 1 mark)

Q20.

Which statement about sound is correct?

(1)

- A Sound can travel through a solid.
- **B** Sound can travel through a vacuum.
- **C** Sound waves can travel as polarised waves.

D Sound waves travel in a direction perpendicular to the direction of the oscillations.

Q21.

Which of the following is a correct statement about a stationary wave?

- A All points on the wave oscillate in phase.
- **B** A node is formed at a point of constructive interference.
- **C** Stationary waves can only be formed from transverse waves.
- **D** Two points $\frac{\lambda}{2}$ apart oscillate with the same amplitude.

(Total for question = 1 mark)

Q22.

Sound waves are produced by a vibrating guitar string.

Which row in the table correctly describes the waves produced?

(1)

	Guitar string	Sound
A	transverse	transverse
B	longitudinal	longitudinal
C	longitudinal	transverse
D	transverse	longitudinal

Mark Scheme – Wave properties and Stationary Waves (MCQ Only)

Q1.

Question Number	Answer	Mark
	C increasing the length of the string	1
	Incorrect Answers:	
	A results in a higher value for f	
	B results in a higher value for f	
	D results in a higher value for f	

Q2.

Question Number	Answer	Mark
	D wavelength	1
	Incorrect Answers: A – determined from the maximum displacement on y-axis B – determined from 1/time for one cycle C – determined from the time for one cycle on x-axis	

Q3.

Question	Answer	Mark
Number		
	В	1
	displacement 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
	Incorrect Answers:	
	A compression and rarefaction both occur at regions of 0 displacement	
	C compression and rarefaction both occur at regions of 0 displacement	
	D compression and rarefaction are labelled the wrong way round with respect to the	
	direction of the positive displacement	

Q4.

Question Number	Answer	Mark
	D – increases non-linearly Incorrect Answers: A – incorrect as $f \propto \sqrt{T}$ B – incorrect as $f \propto \sqrt{T}$ C – incorrect as $f \propto \sqrt{T}$	1

Q5.

Question	Answer	Mark
Number		
	A $\frac{2\pi t}{T}$	1
	Incorrect Answers: B - no factor of 2 C - incorrect substitution of f D - incorrect substitution of f and no factor of 2	

Q6.

Question Number	Answer	1	Mark
	$C - \mu = \frac{1}{\text{gradient}}$		1
	Incorrect Answers:		
	A – incorrect use of $v = \sqrt{\frac{T}{\mu}}$		
	B – incorrect use of $v = \sqrt{\frac{T}{\mu}}$		
	D - incorrect use of $v = \sqrt{\frac{T}{\mu}}$		

Q7.

Question	Answer	Mark
Number		
	$\mathbf{D} - \frac{P}{\pi r^2}$	1
	Incorrect Answers:	
	A – Incorrect equations	
	B – Incorrect equation for area of a circle	
	C – Incorrect equation	

Q8.

Question Number	Апѕwer	Mark
Number	D – both are moving up Incorrect Answers: A – incorrect answer B – incorrect answer C – incorrect answer	1

Q9.

Question Number	Answer	Additional guidance	Mark
	с	(polarisation)	(1)

Q10.

Question Number	Answers	Additional Guidance	Mark
	D	particles undergo no disturbance at an antinode	(1)

Q11.

Question Number	Acceptable answer	Additional guidance	Mark
	В	The only correct answer is B : light leaving Y is polarised in its plane of polarisation and 135° is perpendicular to the plane of Y, so there will be maximum absorption by filter Z A is not correct because Z is not perpendicular to the plane of Y so some light is transmitted C is not correct because Z is not perpendicular to the plane of Y so some light is transmitted D is not correct because Z is not perpendicular to the plane of Y so some light	1
		is transmitted	

Q12.

Question Number	Answer	Mark
	A 0.4 + 0.05 Incorrect Answers: B – compound uncertainties by addition C – compound uncertainties by addition D – compound uncertainties by addition	1

Q13.

Question Number	Answer	Mark
	$C = \frac{\pi}{3}$	1
	Incorrect Answers:	
	A – incorrect	
	B-incorrect	
	D – incorrect	

Q14.

Question Number		Acceptable answers	Additional guidance	Mark
	D	90 degrees		1

Q15.

Question Number		Acceptable answers	Additional guidance	Mark
	D	oscillates in one direction, no light		1

Q16.

Question	Answer	Mark
Number		
	D Transverse waves are always plane polarised.	1
	Incorrect Answers:	
	A – An unpolarised wave may be polarised on reflection from a surface.	
	B – Longitudinal waves cannot be plane polarised.	
	C - The vibrations in an unpolarised wave are in many directions.	

Q17.

Question	Answer	1	Mark
Number			
	B - v = 2fl		1
	Incorrect Answers:		
	A – wavelength is 2/		
	C - wavelength is 2l		
	D - wavelength is 2l		

Q18.

Question Number	Acceptable Answers	Additional Guidance	Mark
	C		1

Q19.

Question Number	Answer	Mark
	The only correct answer is C because decreasing the mass on the	1
	hanger decreases the tension in the string and, since $v = \sqrt{\frac{T}{\mu}}$,	
	decreases the speed of waves on the string. $\lambda = v/f$ so the wavelength is	
	shorter and a whole wavelength could fit in the original length	
	A the wavelength at the original frequency is unchanged, so decreasing the length will not allow a whole wavelength B decreasing the frequency will increase the wavelength, since wave speed is unchanged, so this will not allow a whole wavelength D since $v = \sqrt{\frac{T}{\mu}}$, decreasing the mass per unit length will increase the wave speed, increasing the wavelength at the original frequency, so this will not allow a whole wavelength	

Q20.

Question Number		Acceptable answers	Additional guidance	Mark
	A	Sound can travel through a solid.		1

Q21.

Question	Answer	Mark
Number		
	D – Two points $\frac{\lambda}{2}$ apart oscillate with the same amplitude	
	Incorrect Answers: A – Points on a wave do not all oscillate in phase B – A node is formed from destructive interference C – Stationary waves may also be formed from longitudinal waves	

Q22.

Question Number		Acceptable answers	Additional guidance	Mark
	D	transverse, longitudinal		1