Question Number	Answer		Mark
1(a)	Photon – quantum/packet of something relevant e.g. light, radiation, any other named e-m radiation, energy	(1)	
	(quantum/packet) of <u>electromagnetic</u> energy/radiation/waves (dependent mark)	(1)	2
(b)	Use of $(20.66 - 18.70) \times 1.6 \times 10^{-19}$	(1)	
	Use of $E = hf$ (with energy in eV or J) $f = 4.7 \times 10^{14} \text{ Hz}$	(1) (1)	3
	Example of calculation $f = (20.66 - 18.70) \times 1.6 \times 10^{-19} / 6.63 \times 10^{-34}$ $f = 4.73 \times 10^{14} \text{ Hz}$		
(c)	From kinetic energy of atoms	(1)	1
(d)	Diffraction	(1)	
	Light spreads (sideways) as it passes through the slit	(1)	
	Narrower slit causes more diffraction/spreading		
	Or diffraction increasing as gap width gets closer to wavelength	(1)	3
	Total for question		9

Question Number	Answer	Mark
2(a)	Observations:Most alpha went straight through / undeflected(1)[Do not credit just "alphas go through"](1)Some / few deflected[not "reflected]Very few / < 1 in 1000 came straight back / were deflected through very	3
(b)(i)	Any mention of tubes(1)Alternating p.d. / a.c. p.d. /alternating electric field(1)Length of tubes increases(1)	3
(b)(ii)	Use of $p = E/c$ with $c = 3 \times 10^8$ (1) (Use of de Broglie) $\lambda = h/p$ with $h = 6.6 \times 10^{-34}$ (1) wavelength = 6.2×10^{-17} m (1) Example of answer $p = 20 \times 1.6 \times 10^{-10}$ J / 3×10^8 m s ⁻¹ = 1.1×10^{-17} N s Correct sub of h and p i.e. $\lambda = 6.6 \times 10^{-34} / 1.1 \times 10^{-17}$ N s	3
(b)(iii)	Wavelengths need to be smaller than nuclei[allow same as / similar to – must be comparative](1)	1
(b)(iv)	Proton is not uniform / has space(1)Contains quarks(1)[ignore any reference to charge](1)	2
(b)(v)	Kinetic energy is not conserved(1)[K.E. and momentum not conserved – do not credit]	1
	Total for question	13

Question Number	Answer		Mark
3(a)	photon absorbed by electron	(1)	
	electron moves to higher energy level Or electron excited	(1)	
	where photon energy = difference in energy levels	(1)	
	only certain changes/differences possible	(1)	
	between discrete energy levels	(1)	5
3(b)(i)	Use of $E = hf$	(1)	
	Use of conversion factor to eV	(1)	
	Energy of photon = $1.91 (eV)$	(1)	
	Identify levels 3.41 (eV) and 1.51 (eV) Or levels 1 and 2	(1)	4
	Example of calculation		
	$E = 6.63 \times 10^{-34} \text{ Js} \times 4.6 \times 10^{14} \text{ Hz} (= 3.05 \times 10^{-19} \text{ J})$		
	$E = 6.63 \times 10^{-34} \text{ J s} \times 4.6 \times 10^{14} \text{ Hz} \div 1.6 \times 10^{-19} \text{ J s}$		
	= 1.91 eV		
	= 3.41 eV - 1.51 eV (1.90 eV) as the closest match		
3(b)(ii)	Just-free electrons have zero energy state		
	Or energy value of level $n = \infty$ is 0	(1)	
	(Bound) electrons need to gain energy to attain this state		
	Or electrons need to gain energy to move to a higher level	(1)	2
	(Accept Because they must gain energy to move up for second mark)		
2(-)	(accept answers in terms of ionisation energy)		
3(c)	Look for corresponding pattern of lines / frequency spacings at different place in spectrum Or reference to known normal positions	(1)	
	place in spectrum of reference to known normal positions	(1)	
	moving away increases observed wavelength / decreases frequency (or the		
	case for moving towards)	(1)	
	so if shifted to red end then moving away (or blue = towards) \mathbf{Or} the greater		
	the velocity the greater the change in frequency	(1)	3
	Total for question		14

Question Number	Answer	Mark
4(a)	The wavelength (associated) with a particle/electron(1)with a given momentum(1)Or $\lambda = h/p$ $\lambda = h/p$ (1)all terms defined(1)	2
4(b)(i)	Use of $E_k = eV$ (1) Use of $E_k = p^2/2m$ Or use of $E_k = mv^2/2$ and $p = mv$ (1) Momentum = 1.21×10^{-23} kg m s ⁻¹ (1) Example of calculation $E_k = 1.6 \times 10^{-19}$ C× 500 V	3
4(b)(ii)	$p^{2} = 2 m E_{k} = 2 \times 9.11 \times 10^{-31} \text{ kg} \times (1.6 \times 10^{-19} \times 500) \text{ J}$ $p = 1.21 \times 10^{-23} \text{ kg m s}^{-1}$ Use of $\lambda = h/p$ (1) $\lambda = 5.49 \times 10^{-11} \text{ m}$ (ccf value of p from (i)) (show that value gives $6.63 \times 10^{-11} \text{ m}$) (1)	2
	$\frac{\text{Example of calculation}}{p = 6.63 \times 10^{-34} \text{ J s} / 1.21 \times 10^{-23} \text{ kg m s}^{-1}} \\ \lambda = 5.49 \times 10^{-11} \text{ m}$	
	Total for question	7