Question Number	Answer		Mark
1(a)	Photon - quantum/packet of something relevant e.g. light, radiation, any other named e-m radiation, energy (quantum/packet) of electromagnetic energy/radiation/waves (dependent mark)	(1) (1)	2
(b)	Use of $(20.66-18.70) \times 1.6 \times 10^{-19}$ Use of $E=h f$ (with energy in eV or J) $f=4.7 \times 10^{14} \mathrm{~Hz}$ Example of calculation $\begin{aligned} & f=(20.66-18.70) \times 1.6 \times 10^{-19} / 6.63 \times 10^{-34} \\ & f=4.73 \times 10^{14} \mathrm{~Hz} \end{aligned}$	(1) (1) (1)	3
(c)	From kinetic energy of atoms	(1)	1
(d)	Diffraction Light spreads (sideways) as it passes through the slit Narrower slit causes more diffraction/spreading Or diffraction increasing as gap width gets closer to wavelength	(1) (1) (1)	3
	Total for question		9

Question Number	Answer	Mark
2(a)	Observations: Most alpha went straight through / undeflected [Do not credit just "alphas go through"] Some / few deflected [not "reflected] Very few / < 1 in 1000 came straight back / were deflected through very large angles ($>90^{\circ}$) / were reflected	3
(b)(i)	Any mention of tubes (1) Alternating p.d. / a.c. p.d. /alternating electric field Length of tubes increases	3
(b)(ii)	Use of $p=E / c$ with $c=3 \times 10^{8}$ (Use of de Broglie) $\lambda=h / p$ with $h=6.6 \times 10^{-34}$ wavelength $=6.2 \times 10^{-17} \mathrm{~m}$ Example of answer $p=20 \times 1.6 \times 10^{-10} \mathrm{~J} / 3 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}=1.1 \times 10^{-17} \mathrm{~N} \mathrm{~s}$ Correct sub of h and p i.e. $\lambda=6.6 \times 10^{-34} / 1.1 \times 10^{-17} \mathrm{~N} \mathrm{~s}$	3
(b)(iii)	Wavelengths need to be smaller than nuclei [allow same as / similar to - must be comparative]	1
(b)(iv)	Proton is not uniform / has space Contains quarks [ignore any reference to charge]	2
(b)(v)	Kinetic energy is not conserved [K.E. and momentum not conserved - do not credit]	1
	Total for question	13

Question Number	Answer		Mark
3(a)	photon absorbed by electron electron moves to higher energy level Or electron excited where photon energy = difference in energy levels only certain changes/differences possible between discrete energy levels	$\begin{aligned} & \text { (1) } \\ & \text { (1) } \\ & \mathbf{(1)} \\ & \mathbf{(1)} \\ & \mathbf{(1)} \end{aligned}$	5
3(b)(i)	Use of $E=h f$ Use of conversion factor to eV Energy of photon $=1.91(\mathrm{eV})$ Identify levels $3.41(\mathrm{eV})$ and $1.51(\mathrm{eV})$ Or levels 1 and 2 $\begin{aligned} & \text { Example of calculation } \\ & E=6.63 \times 10^{-34} \mathrm{~J} \mathrm{~s} \times 4.6 \times 10^{14} \mathrm{~Hz}\left(=3.05 \times 10^{-19} \mathrm{~J}\right) \\ & E=6.63 \times 10^{-34} \mathrm{~J} \mathrm{~s} \times 4.6 \times 10^{14} \mathrm{~Hz} \div 1.6 \times 10^{-19} \mathrm{~J} \mathrm{~s} \\ & =1.91 \mathrm{eV} \\ & =3.41 \mathrm{eV}-1.51 \mathrm{eV}(1.90 \mathrm{eV}) \text { as the closest match } \end{aligned}$	$\begin{aligned} & \hline \mathbf{(1)} \\ & \mathbf{(1)} \\ & \mathbf{(1)} \\ & \mathbf{(1)} \end{aligned}$	4
3(b)(ii)	Just-free electrons have zero energy state Or energy value of level $n=\infty$ is 0 (Bound) electrons need to gain energy to attain this state Or electrons need to gain energy to move to a higher level (Accept Because they must gain energy to move up for second mark) (accept answers in terms of ionisation energy)	(1) (1)	2
3(c)	Look for corresponding pattern of lines / frequency spacings at different place in spectrum Or reference to known normal positions moving away increases observed wavelength / decreases frequency (or the case for moving towards) so if shifted to red end then moving away (or blue = towards) Or the greater the velocity the greater the change in frequency	(1) (1) (1)	3
	Total for question		14

Question Number	Answer		Mark
4(a)	The wavelength (associated) with a particle/electron with a given momentum Or $\lambda=h / p$ all terms defined	(1) (1) (1) (1)	2
4(b)(i)	Use of $E_{\mathrm{k}}=e \mathrm{~V}$ Use of $E_{\mathrm{k}}=p^{2} / 2 m$ Or use of $E_{\mathrm{k}}=m v^{2} / 2$ and $p=m v$ Momentum $=1.21 \times 10^{-23} \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1}$ $\begin{aligned} & \text { Example of calculation } \\ & E_{\mathrm{k}}=1.6 \times 10^{-19} \mathrm{C} \times 500 \mathrm{~V} \\ & p^{2}=2 \mathrm{~m} E_{\mathrm{k}}=2 \times 9.11 \times 10^{-31} \mathrm{~kg} \times\left(1.6 \times 10^{-19} \times 500\right) \mathrm{J} \\ & p=1.21 \times 10^{-23} \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1} \end{aligned}$	$\begin{aligned} & \hline \text { (1) } \\ & \text { (1) } \\ & \text { (1) } \end{aligned}$	3
4(b)(ii)	Use of $\lambda=h / p$ $\lambda=5.49 \times 10^{-11} \mathrm{~m}$ (ecf value of p from (i)) (show that value gives $6.63 \times 10^{-11} \mathrm{~m}$) Example of calculation $\begin{aligned} & p=6.63 \times 10^{-34} \mathrm{~J} \mathrm{~s} / 1.21 \times 10^{-23} \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1} \\ & \lambda=5.49 \times 10^{-11} \mathrm{~m} \end{aligned}$	$\begin{aligned} & \text { (1) } \\ & \text { (1) } \end{aligned}$	2
	Total for question		7

