1 An explorer walks 6 km due north from his camp and then 6 km due west.
What is the magnitude, in km, of the total displacement of the explorer?A 12B $\sqrt{12}$
C 72D $\sqrt{72}$
(Total for Question = 1 mark)

2 A sample of material has charge carrier density n and cross-sectional area A. When the current through the sample is I the drift velocity is v.

Another sample of the same material has double the cross-sectional area and the current through it is $2 I$. What is the drift velocity?A $v / 2$B vC $2 v$D $4 v$

3 The diagram shows a current I flowing through a sample of material of length l and cross-sectional area A.

The drift velocity of the free electrons is v.
If the area and length are both doubled, but the current remains the same, the drift velocity will beA $v / 4$B $v / 2$C $2 v$D $4 v$

(Total for Question = 1 mark)

4 Two wires of the same material are connected in series with a potential difference across them. Wire A has twice the cross-sectional area of wire B.

The ratio $\frac{\text { drift speed of electrons in } \mathrm{A}}{\text { drift speed of electrons in } \mathrm{B}}$ equalsA $1 / 4$B $1 / 2$C 2D 4

5 Two wires of the same material are connected in series in the circuit shown.

The cross-sectional area of wire X is twice the cross-sectional area of wire Y .
The drift velocities of the electrons in these two wires are v_{X} and v_{Y}.
The value of $\frac{v_{\mathrm{X}}}{v_{\mathrm{Y}}}$ isA $1 / 2$B 1C 2D 4

6 Two wires of the same material are connected in series with each other. Wire A has twice the diameter of wire B. In which of the following rows are both statements correct?

		$\frac{\text { current in wire A }}{\text { current in wire B }}$	$\frac{\text { drift speed in wire A }}{\text { drift speed in wire B }}$
\square	A	1	$\frac{1}{4}$
\square	B	1	4
\square	C	2	4
\square	D	2	$\frac{1}{4}$

$$
\text { (Total for Question = } 1 \text { mark) }
$$

7 The drift velocity v of electrons in a conductor is directly proportional to
■ A electron charge.
$\square \quad$ B charge carrier density.
$\square \quad \mathbf{C}$ cross-sectional area.
® D current.
(Total for Question 1 mark)

8 The resistance of a length of coppe. Aisecond prece of copper wire has twice the length and twice the cross-sectional area. The resistance of the second piece of copper wire isA 3ΩB 6ΩC 12ΩD 24Ω

9 The heating element for an electric fire is made from a wire of resistance R. It is replaced with a wire of the same material which has the same length but is twice the diameter. The resistance of this second wire isA $1 / 4 R$B $1 / 2 R$C $2 R$D $4 R$
(Total for Question = 1 mark)

10 The current through a wire of cross-sectional area A is I when the drift velocity of the electrons in the wire is v and the charge carrier density is n.

The wire is replaced with a wire of a different metal with half the charge carrier density but the same cross-sectional area A.

If the current in the new wire is $2 I$, the drift velocity isA $\quad v / 2$B vC $2 v$D $4 v$

11 A copper wire of length 2.5 m and cross-sectional area $2.4 \times 10^{-7} \mathrm{~m}^{2}$ has a resistivity of $1.7 \times 10^{-8} \Omega \mathrm{~m}$.

What is the resistance of the wire?
\square A $1.6 \times 10^{-15} \Omega$
\square B $1.0 \times 10^{-14} \Omega$
$\square \mathbf{C} 0.18 \Omega$
D 5.6Ω

