Thermodynamics - Mark Scheme

Q1.

Question	Answer	Mark
Number		
	The only correct answer is D	1
	$m{A}$ is not correct because deep space is a few degrees above absolute zero	
	B is not correct because nitrogen liquefies at a much higher temperature	
	C is not correct because we have not yet attained absolute zero in an experiment	

Q2.

Question	Answer	Mark
Number		
(a)	Use of $pV = NkT$ (1)	
	Conversion of temperature to kelvin (1)	
	$N = 3.1 \times 10^{23} \tag{1}$	3
	Example of calculation $N = \frac{pV}{kT} = \frac{1.55 \times 10^5 \text{N m}^{-2} \times 8.18 \times 10^{-3} \text{m}^3}{1.38 \times 10^{-23} \text{m}^2 \text{kgs}^{-2} \text{K}^{-1} \times (273 + 20) \text{K}} = 3.14 \times 10^{23}$	

Question			Mark
Number	Answer		
(b)(i)	Use of energy conservation [$\Delta E_{\text{grav}} = \Delta E_{\text{k}}$]	(1)	
	Use of $\Delta E_{grav} = mg\Delta h$	(1)	
	$\Delta E_{\rm k} = 2.43 \; (\rm J)$	(1)	3
	Example of calculation		
	$\Delta E_{\text{grav}} = 0.62 \text{kg} \times 9.81 \text{ms}^{-2} \times (1.8 \text{m} - 1.4 \text{m}) = 2.43 \text{ J}$		
(b)(ii)	EITHER	(1)	
	Use of $\Delta E = mc\Delta\theta$ to find energy for temperature rise of 0.5°C		
	Use of number of drops = $\frac{\Delta E}{\Delta E_k}$	(1)	
	For a rebound to 1.40 m, number of times ball must be dropped = 149 [Accept 150] [Use of 'show that' value gives 151]		
	Or For a rebound to 1.60 m, number of times ball must be dropped = 297 [accept 298]	(1)	
	OR		
	Use of $\Delta E = mc\Delta\theta$ to find $\Delta\theta$ for one drop	(1)	
	Use of number of drops = $\frac{0.5}{\Delta \theta}$	(1)	
	For a rebound to 1.40 m, number of times ball must be dropped = 149 [Accept 150] [Use of 'show that' value gives 151] Or		
	For a rebound to 1.60 m, number of times ball must be dropped = 297 [accept 298]	(1)	3
	(ecf candidate's value of ΔE_k from (i) used to find minimum number of drops)		
	Example of calculation $\Delta E = 0.62 \text{kg} \times 1170 \text{J kg}^{-1} \text{K}^{-1} \times 0.5 \text{K} = 363 \text{J}$		
	Number of bounces = $\frac{363 \text{ J}}{2.43 \text{ J}} = 149$		

Question	Answer	Mark
Number		
b(iii)	No energy transfer to the surroundings	
	[Accept Ball rebounds to 140 m every time Ball rebounds to 160 m every time Ball rebounds to same height every time No energy lost to surroundings No energy is dissipated] [Accept heat for energy] [Do not accept No heat/energy lost Volume/mass of ball is constant Air behaves as an ideal gas Room temperature is constant No air leaks from the ball]	1
	Total for question	10

Q3.

Question Number	Answer		Mark
(a)	Evidence of calculation of average temperature [52.5 °C]	(1)	
	SAF WAR	(1)	
	Use of $\Delta E = mc\Delta\theta$		
	$\Delta E = 2920 \text{ (J)}$	(1)	3
	Example of calculation		
	$\Delta E = mc\Delta\theta$		
	$\Delta E = 22.5 \times 10^{-3} \text{kg} \times 4190 \text{J kg}^{-1} \text{K} \times (52.5 - 21.5) = 2920 \text{J}$		
(b)	Precaution	(1)	
	Precaution	(1)	
	Corresponding reason [dependent mark]	(1)	2
	Example of answers:		
	Water should be stirred		
	So water is all at the same temperature		
	No draughts		
	So that all the energy from the crisp is transferred to the test tube		
	Light crisp close to test tube So that all the energy from the crisp is transferred to the test tube		
	Keep crisp close to test tube To reduce the heat dissipated to surroundings		
	Small thermometer bulb		
	To reduce energy transfer to the bulb		
	Use test tube of low specific heat capacity		
	To reduce energy transferred to the test tube		
	Read thermometer at eye level		
	To avoid parallax error leading to incorrect temperature		
(c)	The energy value calculated (from the experimental data) is much less		
	(than the value stated on the crisp packet) [accept a ratio e.g. 13%]	(1)	
	not all the energy (from the crisp) is transferred to the water		
	Or not all of the energy content of the crisps is released by burning	(I)	2
	[do not accept a bald statement "energy transferred to surroundings"]	(1)	
	Total for question		7

Q4.

Question Number	Answer	Mark
	C is correct because $E_{ m k} \propto T$	1

Q5.

	Answer		Mark
(a)	Use of $\Delta E = mc\Delta T$	(1)	
	$\Delta E = 1.7 \times 10^7 \mathrm{J}$	(1)	2
	Example of calculation		
	$\Delta E = mc\Delta T = 275 \text{ kg} \times 3.59 \times 10^3 \text{ J kg}^{-1} \text{ K}^{-1} \times (18.5 - 1.5) \text{ K}$		
	$\Delta E = 1.68 \times 10^7 \mathrm{J}$		
(b)	Use of $P = \frac{\Delta W}{\Delta t}$	(1)	
	Valid attempt at calculation of ΔT		
	Or Valid attempt at calculation of "safe" time $[t = 3430 \text{ s if } \Delta\theta = 4 \text{ °C}]$	(1)	
	Conclusion that $\theta \ge 4$ (°C) (so meat may be unsafe to eat)		
	Or	(1)	3
	"Safe" time less than 3600 s (so meat may be unsafe to eat)	(2)	
	Example of calculation		
	$\Delta W = Pt = 720 \text{W} \times 3600 \text{ s} = 2.59 \times 10^6 \text{ J}$		
	$\Delta \theta = \frac{\Delta W}{mc} = \frac{2.59 \times 10^6 \text{J}}{275 \text{kg} \times 3.59 \times 10^3 \text{Jkg}^{-1} \text{K}^{-1}} = 2.6 \text{K}$		
	Total for Question		5

Q6.

Question Number	Answer		Mark
(a)	Use of $pV = NkT$	(1)	
	$p = 1.1 \times 10^5 (Pa)$	(1)	
	Example of calculation		
	$p = \frac{NkT}{V} = \frac{2.2 \times 10^{23} \times 1.38 \times 10^{-23} \text{ J K}^{-1} \times 293 \text{ K}}{8.2 \times 10^{-3} \text{ m}^3} = 1.08 \times 10^5 \text{ Pa}$		2
(b)	Correct use of a factor of 50	(1)	
	$V = 0.019 \text{ m}^3 [0.018 \text{ m}^3 \text{ if 'show that' value used}]$	(1)	
	[Ratio method, $p_1V_1=p_2V_2$ can score both marks, for this method apply ecf from ai]		
	For candidates who take the number of molecules that remain in the canister into account:		
	 Use of v_{helium} = (50×v_{balloon} + v_{canister}) V = 0.0203 m³ 	(1) (1)	
	Example of calculation		
	$V = \frac{NkT}{p} = \frac{50 \times 2.2 \times 10^{23} \times 1.38 \times 10^{-23} \text{J K}^{-1} \times 293}{2.3 \times 10^6 \text{Pa}} = 0.0193 \text{m}^3$		2
(c)	There are fewer atoms (in the canister), so the collision rate with the walls		
	decreases [accept molecules but not particles]	(1)	
	Hence the (overall) rate of change of momentum is less	(1)	
	Therefore there is a smaller force (on the container walls)	(1)	
	[dependent upon mp2]	(1)	
			3
	Total for Question		7

Q7.

	Answer	Mark
	A	1

Question Number	Answer		Mark
(a)(i)	$V_{in} = 5.9 \times 10^{-3} \text{ m}^3 \text{ and } V_{out} = 1.3 \times 10^{-3} \text{ m}^3$		
	Or $\Delta V = 4.6 \times 10^{-3} \text{ m}^3$	(1)	
		(1)	
	Use of $pV = NkT$	(1)	
	$N = 1.1 \times 10^{23}$	(1)	3
	Example of calculation:		
	$N = \frac{pV}{kT} = \frac{1.02 \times 10^5 \text{ Pa} \times (5.9 - 1.3) \times 10^{-3} \text{ m}^3}{1.38 \times 10^{-23} \text{ J K}^{-1} (273 + 37) \text{ K}} = 1.10 \times 10^{23}$		
(a)(ii)	Use of $\frac{1}{2}m\langle c^2 \rangle = \frac{3}{2}kT$	(1)	
	2 2	(1)	2
	$E_{k, \text{ tot}} = 710 \text{ J}$	(1)	
	[apply ecf for responses that use a value of N that would round to the		
	'show that' value]		
	Example of calculation:		
	$E_{k,tot} = N \times \frac{3}{2} kT = 1.1 \times 10^{23} \times 1.5 \times 1.38 \times 10^{-23} \text{J K}^{-1} \times (273 + 37) \text{K} = 706 \text{J}$		
(a)(iii)	Internal energy is the sum of kinetic and potential energy of the		
	(molecules/atoms in the) air	(1)	
		(4)	
	The molecules/atoms (in an ideal gas) have no potential energy	(1)	2
(b)(i)	Oxygen molecules (are more massive than nitrogen molecules and) have		
	a lower mean square speed than the nitrogen molecules.	(1)	
	Because $\frac{1}{2}m\langle c^2\rangle$ is the same for each type of molecule		
	Or average/mean kinetic energy is the same for each type of molecule	(1)	2
	of average mean kinetic energy is the same for each type of molecule		
\$10 × 10×			•
*(b)(ii)	QWC – Work must be clear and organised in a logical manner using technical wording where appropriate		
	connear wording where appropriate		
	Both gases occupy the same volume $\boldsymbol{\mathcal{V}}$ and are at the same temperature T	(1)	
	N		
	As pressure $p = \frac{NkT}{V}$ then $p \propto N$ the number of molecules	(1)	
	V	(1)	
	The contribution to pressure exerted by each gas is determined by the		
	number of molecules (of that gas)	(1)	3
	Former determined at 100% Cd. 1 1 1 2 d.		
	[accept statement that 80% of the molecules in the gas are nitrogen molecules and so nitrogen accounts for 80% of the pressure for mp3]		
	me pressure for imps		
	Total for question		12

Question Number	Answer	Mark
(a)	Use of $\frac{1}{2}m\langle c^2 \rangle = \frac{3}{2}kT$ Or $\frac{1}{2}m\langle c^2 \rangle = \text{constant}$ (1) $\langle c^2 \rangle_{\text{X}} = 5.6 \times 10^4 (\text{m}^2 \text{s}^{-2})$ (1) [If a reasonable Kelvin temperature is estimated and used in the equation, can score MP1 only] $\frac{\text{Example of calculation}}{\langle c^2 \rangle_{\text{X}}} = \frac{m_{\text{K}}}{m_{\text{X}}}$ $\langle c^2 \rangle_{\text{X}} = \frac{(1.39 \times 10^{-25} \text{ kg})}{(2.18 \times 10^{-25} \text{ kg})} \times 8.72 \times 10^4 \text{m}^2 \text{s}^{-2} = 5.56 \times 10^4 \text{m}^2 \text{s}^{-2}$	2
* (b)	(QWC Spelling of technical terms must be correct and the answer must be organised in a logical sequence.)	
	The molecules/atoms move faster Or the (average) <u>kinetic</u> energy of molecules/atoms is greater (1)	
	Collision rate of molecules/atoms with the glass bulb is larger Or there are more frequent collisions between the molecules/atoms and the glass bulb (1)	
	There is more <u>momentum</u> change in each collision Or the rate of change of <u>momentum</u> is greater (1)	4
	Therefore there is a larger force on the glass bulb (dependent upon mp2 or mp3) (1)	
	[No credit for attempt to justify increase in pressure by using $pV = NkT$.] [Accept container/walls for glass bulb.]	
	Total for question	6

Q10.

Question Number	Answer		Mark
(a)	Use of $\Delta E = mc\Delta\theta$	(1)	
	Use of $P = \frac{\Delta W}{\Delta t}$	(1)	
	t = 250 s	(1)	3
	Example of calculation:		
	$44 \times 85 \text{ W} = 110 \text{ kg} \times 720 \text{ J kg}^{-1} \text{K}^{-1} \times \frac{(28-16) \text{ K}}{\Delta t}$		
	$\Delta t = \frac{110 \text{ kg} \times 720 \text{ J kg}^{-1} \text{ K}^{-1} \times 12 \text{ K}}{44 \times 85 \text{ W}} = 254 \text{ s}$		
(b)	Conduction through the walls and windows of the carriage Or Heating the materials of the carriage.		
	Or Warm air escaping from the carriage (and replaced by cooler air) Or Not all the energy from the people is used to raise the temperature of		1
	the air	(1)	
			4
			4

Q11.

Question	Answer	Mark
Number		
	The only correct answer is B	1
	A is not correct because at the same temperature, the average kinetic energy is the same all molecules	
	C is not correct because mass of H ₂ molecule < mass of He molecule	
	D is not correct because mass of H ₂ molecule < mass of He molecule	

Q12.

Question Number	Answer	Mark
	C is the correct answer as the gas obeys Boyle's law, $p \propto \frac{1}{v}$	1