Simple Harmonic Motion - Mark Scheme

Q1.

Question Number	Answer	Mark
	The only correct answer is D	
	A is not correct, as the inverse ratio has been calculated. B is not correct as the inverse ratio has been calculated but the amplitude ratio hasn't been squared. C is not correct, as the amplitude ratio hasn't been squared	(1)

Q2.

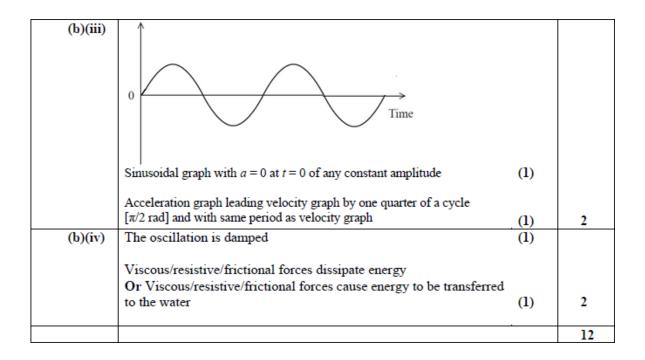
Question	Answer	Mark
Number		
	The only correct answer is D	1
	A is not correct because the energy is proportional to the amplitude squared	
	B is not correct because the energy is proportional to the amplitude squared	
	C is not correct because the energy is proportional to the amplitude squared	

Q3.

Question Number	Answer	Mark
	С	1

Question Number	Answer	Mark
(a)	Use of $T = 2\pi \sqrt{\frac{m}{k}}$ and $f = \frac{1}{T}$ (1)	
	Correct use of factor 4 in spring constant or mass (1)	
	$f = 3.3 \text{ Hz (accept unit s}^{-1})$ (1)	
	Example of calculation:	
	$k = 4 \times 450 \text{ Nm}^{-1} = 18\ 00 \text{ Nm}^{-1}$	
	$T = 2\pi \sqrt{\frac{m}{k}} = 2\pi \sqrt{\frac{4.3 \mathrm{kg}}{1800 \mathrm{N m}^{-1}}} = 0.307 \mathrm{s}$	
	$f = \frac{1}{T} = \frac{1}{0.307 \text{s}} = 3.26 \text{Hz}$	3

Total for Question 6	(b)	Either Acceleration is: • (directly) proportional to displacement from equilibrium position • (always) acting towards the equilibrium position Or idea that acceleration is in the opposite direction to displacement (1) Or (Resultant) force is: • (directly) proportional to displacement from equilibrium position • (always) acting towards the equilibrium position Or idea that force is a restoring force e.g. "in the opposite direction" [accept towards undisplaced point/fixed point/central point for equilibrium position] [An equation with symbols defined correctly is a valid response for both marks. e.g. a ∞ −x or F ∞ −x] And (The box undergoes simple harmonic motion because) the springs obey Hooke's law (1)	


Q5.

Question Number	Answer		Mar k
(a)	EITHER		
	Acceleration is:		
	(directly) proportional to displacement from the equilibrium position	(1)	
	(always) acting towards the equilibrium position		
	Or idea that acceleration is in the opposite direction to displacement	(1)	
		\-\/	
	OR		
	Force is:	(1)	
	(directly) proportional to displacement from the equilibrium position	(1)	
	(always) acting towards the equilibrium position	(1)	
	Or idea that force is a restoring force e.g. "in the opposite direction"		
	FAt and instant a sint found a sint control as interests		2
	[Accept undisplaced point, fixed point, central point, centre		
	for equilibrium position] [An equation with all symbols defined correctly is a valid response for		
	both marks. e.g. $a \propto -x$ or $F \propto -x$		
(b)(i)	Mean time period calculated [see 19.07 (s) or working]	(1)	
(b)(i)		(1)	
	Use of $f = \frac{1}{T}$	(1)	
	f = 2.62 (Hz)	(1)	3
	Example of calculation	(1)	3
	$T = \frac{(18.9 + 19.2 + 19.1)s}{3 \times 50} = 0.381s$		
	$1 = {3 \times 50} = 0.3818$		
	$f = \frac{1}{0.381c} = 2.62 \text{ Hz}$		
	$J = \frac{0.381 \text{s}}{0.381 \text{s}} = 2.02 \text{ Hz}$		
(b)(ii)	Use of $\omega = 2\pi f$	(1)	
(-)(-)	Use of $v = \omega A$	(1)	
	$v = 6.2 \times 10^{-2} \text{ m s}^{-1}$	(1)	
	$v = 0.2 \times 10^{-11} \text{ s}$ (ecf candidate's value of f from (i))	(1)	3
	(cer candidate's value of from (1))		
	Example of calculation		
	$\omega = 2\pi \text{rad} \times 2.62 \text{s}^{-1} = 16.5 \text{rad} \text{s}^{-1}$		
	$v = 16.5 \mathrm{rad}\mathrm{s}^{-1} \times 0.375 \times 10^{-2}\mathrm{m} = 6.17 \times 10^{-2}\mathrm{m}\mathrm{s}^{-1}$		
	[Use of 'show that' value gives 6.13×10 ⁻² m s ⁻¹]		
	[Using $A = 0.75$ cm could score MP1 and MP2]		
	Total for question		8

Q6.

Question Number		Answer	Mark
		D is correct because $T \propto \frac{1}{f}$	1

Question Number	Answer		Mark
(a)	The acceleration of an object is proportional to the displacement from the equilibrium position	(1)	
	and (always) directed towards the equilibrium position Or (always) in the opposite direction to displacement	(1)	2
	[Accept answers given in terms of force] [Answers using defined equations acceptable (as long as symbols are identified).] [Accept equilibrium point, centre point, undisplaced position instead of equilibrium position; do not accept mean position]		
(b)(i)	Time multiple (complete) oscillations [Accept measure nT , accept a number ≥ 3]	(1)	
	Repeat timing and calculate a mean time period	(1)	
	Use a (fiducial) marker to indicate the centre/timing position Or Time the oscillations from centre (position) [Accept equilibrium or undisplaced instead of centre]	(1)	3
(b)(ii)	Use of $\omega = \frac{2\pi}{T}$	(1)	
	Use of $v_{\rm max} = \omega A$	(1)	
	$v_{\rm max} = 0.22 \text{ m s}^{-1}$	(1)	3
	Example of calculation: $\omega = \frac{2\pi}{T} = \frac{2\pi}{0.57 \text{ s}} = 11.0 \text{ rad s}^{-1}$ $v_{\text{max}} = \omega A = 11.0 \text{ s}^{-1} \times 2.0 \times 10^{-2} \text{ m} = 0.22 \text{ m s}^{-1}$		

Q8.

Answer	Mark
D	1

Q9.

	Answer	Mark
	В	1

Q10.

Question	Answer	Mark
Number		
	The only correct answer is C	
	A is not correct because the maximum velocity is given by ωA	
	B is not correct because the maximum velocity is given by ωA	
	D is not correct because the maximum velocity is given by ωA	(1)

Q11.

Questio Numbe		Amplification	Mark
	С	The only correct answer is C A is not correct because $a = \omega^2 r$ has been used incorrectly B is not correct because $a = \omega^2 r$ has been used incorrectly D is not correct because $a = \omega^2 r$ has been used incorrectly	1