Gravitational Fields - Mark Scheme

Q1.

Question Number	Answer	Mark
	В	1

Q2.

Question	Answer		Mark
Number	CH		
(a)	Equate $F = \frac{GMm}{r^2}$ and $F = mr\omega^2$		
	Or equate $F = \frac{GMm}{r^2}$ and $\frac{mv^2}{r}$	(1)	
	Use of $T = \frac{2\pi}{\omega}$ Or $v = 2\pi r/T$	(1)	
	T = 5550 s	(1)	3
	Example of calculation		
	$mr\omega^2 = \frac{GMm}{r^2}$: $\omega^2 = \frac{GM}{r^3}$		
	$\omega = \sqrt{\frac{6.67 \times 10^{-11} \text{Nm}^2 \text{kg}^{-2} \times 5.98 \times 10^{24} \text{kg}}{\left(6.37 \times 10^6 \text{m} + 4.1 \times 10^5 \text{m}\right)^3}} = 1.13 \times 10^{-3} \text{ rad s}^{-1}$		
	$T = \frac{2\pi}{\omega} = \frac{2\pi \text{rad}}{1.13 \times 10^{-3} \text{rads}^{-1}} = 5550 \text{s}$		

(b)	Use of $g = \frac{GM}{r^2}$ [may be by using a ratio] Or use of $g r^2 = \text{constant}$ Or use of $g = r \omega^2$ $g = 8.7 \text{ N kg}^{-1} [\text{accept m s}^{-2}]$ Example of calculation $g = \frac{GM}{r^2} = \frac{6.67 \times 10^{-11} \text{ Nm}^2 \text{kg}^{-2} \times 5.98 \times 10^{24} \text{ kg}}{\left(6.37 \times 10^6 \text{ m} + 4.10 \times 10^5 \text{ m}\right)^2} = 8.68 \text{ Nkg}^{-1}$	(1)	2
(c)	The orbiting astronaut/spacecraft is effectively in free fall towards the Earth Or the gravitational force equals/provides the required centripetal force (Hence) there will be no reaction force on the astronauts (and so they will appear to be weightless).	(1) (1)	2
	Total for question		7

Q3.

Question Number	Answer	Mark
	С	1

Q4.

Question	Answer		Mark
Number			
(a)	Use of $F = \frac{Gm_1m_2}{r^2}$		
	Or Use of $g = \frac{Gm}{r^2}$ with $F = mg$	(1)	
	$\frac{F_{sun}}{F_{moon}} = 180$	(1)	
	[Allow max 1 if only $g = \frac{Gm}{r^2}$ is used to find $\frac{gs}{g_M} = 183$]		
	Example of calculation:		
	$\frac{F_{\text{sun}}}{F_{\text{moon}}} = \frac{m_{\text{sun}}}{m_{\text{moon}}} \times \left(\frac{r_{\text{moon}}}{r_{\text{sun}}}\right)^2 = \frac{2 \times 10^{30} \text{kg}}{7 \times 10^{22} \text{kg}} \times \left(\frac{3.8 \times 10^8 \text{m}}{1.5 \times 10^{11} \text{m}}\right)^2 = 183$		2
(b)(i)	$g = \frac{GM}{x^2}$ and $g = \frac{GM}{(x+D)^2}$ (on either side of the Earth's diameter D)	(1)	1
(b)(ii)	$x \gg D$ Or $(x+D) \approx x$	(1)	
	So $\Delta g \approx 0$ [MP2 dependent upon MP1]	(1)	
	Or		
	The distance of the Sun from the Earth is very large compared with the Earth's diameter	(1)	
	Hence the difference in g (at opposite sides of the Earth due to the Sun) is (very) small [MP2 dependent upon MP1]	(1)	
	[Accept g is approximately the same at both positions for MP2]		2
	Total for Question		5

Q5.

Question	Answer	Mark
Number		
	The only correct answer is A	1
	B is not correct because an incorrect distance 2r has been used	
	C is not correct because 3r has been used but not squared	
	D is not correct because an incorrect distance 2r has been used and not been squared	

Q6.

Question Number	Answer	Mark
Number	Ti i i i i i i i i i i i i i i i i i i	1
	The only correct answer is B	
	A is not correct because $g = \frac{GM}{r^2}$ and $m = \rho V$	
	C is not correct because $g=rac{GM}{r^2}$ and $m= ho V$	
	D is not correct because $g = \frac{GM}{r^2}$ and $m = \rho V$	

Q7.

Question Number	Answer	Mark
	A	1

Q8.

o .:			37.1
Question Number	Answer		Mark
(a)(i)	Use of $F = \frac{GMm}{r^2}$ and $F = m\omega^2 r$	(1)	
	Use of $\omega = \frac{2\pi}{T}$	(1)	
	Algebra to show $T^2 = \frac{4\pi^2 r^3}{GM}$	(1)	
	Or		
	Use of $F = \frac{GMm}{r^2}$ and $F = \frac{mv^2}{r}$	(1)	
	Use of $v = \frac{2\pi r}{T}$	(1)	
	Algebra to show $T^2 = \frac{4\pi^2 r^8}{GM}$	(1)	3
(a)(ii)	Use of $T^2 = \frac{4\pi^2}{GM} \cdot r^3$	(1)	
	Uses $N = \frac{24 \times 3600}{T}$ to calculate number of orbits	(1)	
	N=2, hence 4 crossings per day	(1)	3
	Example of calculation:		
	$T^{2} = \frac{4\pi^{2}}{GM} \cdot r^{3}$ $= \frac{4\pi^{2}}{6.67 \times 10^{-11} \text{N m}^{2} \text{kg}^{-2} \times 6.0 \times 10^{24} \text{kg}} \times (2.66 \times 10^{7} \text{ m})^{3}$ $T = \sqrt{1.857 \times 10^{9} s^{2}} = 4.31 \times 10^{4} \text{s}$ $N = \frac{24 \times 3600 \text{ s}}{4.31 \times 10^{4} \text{s}} = 2$ So 4 crossings per day		
(b)	$g = \frac{GM}{r^2} \text{ Or } g \propto \frac{1}{r^2}$	(1)	
	g decreases as Δh increases, so the actual value of $\Delta E_{\rm grav}$ would be less than the calculated value	(1)	2
		•	8

Q9.

Question Number	Answer		Mark
a	Use of $F = \frac{GMm}{r^2}$ with $F = m\omega^2 r$	(1)	
	Use of $\omega = \frac{2\pi}{T}$	(1)	
	$r = 5.8 \times 10^{10} \text{ m}$	(1)	
	OR		
	Use of $F = \frac{GMm}{r^2}$ with $F = \frac{mv^2}{r}$	(1)	
	Use of $v = \frac{2\pi r}{T}$	(1)	
	$r = 5.8 \times 10^{10} \mathrm{m}$	(1)	3
	Example of calculation		
	$\omega = \frac{2\pi \text{ rad}}{7.60 \times 10^6 \text{ s}} = 8.27 \times 10^{-7} \text{ rad s}^{-1}$		
	$\frac{GMm}{r^2} = m\omega^2 r$		
	$\therefore r = \sqrt[3]{\frac{GM}{\omega^2}} = \sqrt[3]{\frac{6.67 \times 10^{-11} \text{N m}^2 \text{kg}^{-2} \times 1.99 \times 10^{30} \text{kg}}{(8.27 \times 10^{-7} \text{ s}^{-1})^2}}$		
	$r = 5.79 \times 10^{10} \mathrm{m}$		

bi	Use of $F = \frac{GMm}{R^2}$ with $F = mg$	(1)	
	Algebra to show $g = \frac{GM}{R^2}$	(1)	2
	(Ignore use of r instead of R and use of m_1 and m_2)		
bii	Use of $g = \frac{GM}{r^2}$	(1)	
	$g = 3.7 \text{ N kg}^{-1}$	(1)	2
	(accept m s ⁻²)		
	Example of calculation		
	$g = \frac{6.67 \times 10^{-11} \text{N m}^{-2} \text{ kg}^{-2} \times 3.30 \times 10^{23} \text{kg}}{(2.44 \times 10^6 \text{ m})^2} = 3.70 \text{ N kg}^{-1}$		
	Total for Question	•	7