Forced Oscillations and Damping - Mark Scheme

Q1.

Question Number	Answer	Mark
(a)(i)	Either (For simple harmonic motion the) acceleration (of the cone) is: • (directly) proportional to displacement from equilibrium position • (always) acting towards the equilibrium position Or idea that acceleration is in the opposite direction to displacement [accept undisplaced point/fixed point/central point for equilibrium position] Or	
	 (For simple harmonic motion the resultant) force (on the cone) is: (directly) proportional to displacement from equilibrium position (always) acting towards the equilibrium position Or idea that force is a restoring force e.g. "in the opposite direction" [accept towards undisplaced point/fixed point/central point for equilibrium position] [An equation with symbols defined correctly is a valid response for both marks. e.g. a ∞ -x or F ∞ -x] 	2

(a)(ii)	Use of $v = A\omega(\sin \omega t)$	(1)	
	Use of $\omega = 2\pi f$	(1)	
	$v = 1.6 \text{ m s}^{-1}$	(1)	3
	Example of calculation: $v = A\omega \sin \omega t = 2.5 \times 10^{-3} \text{m} \times 2\pi \times 100 \text{s}^{-1} \times 1 = 1.57 \text{ms}^{-1}$		
(a)(iii)	Cosine graph [maximum velocity at t = 0,] Constant amplitude with same period as displacement [dependent mark]	(1) (1)	2
	[If a minus cosine graph is drawn with same period as displacement and a constant amplitude, then max 1 mark]		~

*(b)(i)	(QWC Spelling of technical terms must be correct and the answer must be organised in a logical sequence.)		
	This is an example of resonance	(1)	
	The unit is driven/forced into oscillation at its natural frequency	(1)	
	This results in a maximum energy transfer (from speaker to unit)		
	Or this results in a more efficient energy transfer	(1)	3
(b)(ii)	Reference to damping [Description of damping without specific use of the term could gain mark]	(1)	
	Damping linked to removal of energy from the unit	(1)	2
(c)	Tweeter has to move at high frequency/acceleration	(1)	
	So the tweeter requires a small mass	(1)	
	Or		
	Woofer has to set a large volume of air into oscillation	(1)	
	Because it produces low frequency sounds	(1)	2
	[Bald statement that tweeter has high frequency or woofer has low frequency for 1 mark maximum]		
	Total for question		14

Q2.

Question	Answer		Mark
Number	1		
(a)(i)	resultant force (of magnitude) kx acts on car, where x is displacement from equilibrium position	(1)	
	nom equinorium position	(-)	
	(Appling Newton's 2^{nd} Law) $ma = -k x$	(1)	
	Identifies $\omega^2 = \frac{k}{m}$ (from $a = -\omega^2 x$)	(1)	
	Use of $\omega = 2\pi f$ leading to $f = \frac{1}{2\pi} \sqrt{\frac{k}{m}}$	(1)	4
(a)(ii)	Use of mg = $(-)k\Delta x$	(1)	
(4)(11)		(1)	2
	$k = 30.3 \text{ (kN m}^{-1})$	(1)	-
	Example of calculation		
	$k = \frac{mg}{\Delta x} = \frac{85.0 \text{ kg} \times 9.81 \text{ N kg}^{-1}}{27.5 \times 10^{-3} \text{ m}} = 3.03 \times 10^{4} \text{ Nm}^{-1}$		
(a)(iii)	1 /k	(1)	
	Use of $f = \frac{1}{2\pi} \sqrt{\frac{k}{m}}$		
	f = 0.79 Hz	(1)	2
		(1)	2
	Example of calculation		
	$f = \frac{1}{2\pi} \sqrt{\frac{k}{m}} = \frac{1}{2\pi} \times \sqrt{\frac{3.03 \times 10^4 \mathrm{Nm}^{-1}}{(1130 + 85) \mathrm{kg}}} = 0.7948 \mathrm{Hz}$		
	Dhuaise Allevel		

*(b)(i)	(QWC – Work must be clear and organised in a logical manner using technical wording where appropriate)		
	Idea that damping is the transfer of energy (from the oscillating system)	(1)	
	(Damping is desirable because) it reduces <u>amplitude</u> of vibration	(1)	
	So that oscillations die away quickly	(1)	
	Or so that it prevents transfer of energy to oscillation of car body	(1)	3
(b)(ii)	Cosine variation (constant time period; frequency of 2 graphs should be approximately equal)	(1)	
	Amplitude decreasing with time (dependent upon mp1)	(1)	2
	Total for Question		13

Q3.

Question Number	Answer		Mark
(a)(i)	Resonance is when a system is driven/forced (into oscillation) at its natural frequency (Accept close to its natural frequency)	(1)	
	This results in: A maximum energy transfer Or a maximum/increasing amplitude	(1)	
	Or a maximum efficiency of energy transfer		2
(a)(ii)	the wavelength is larger (hence the frequency is smaller)	(1)	1
(b)(i)	(Damping is) the removal/dissipation of energy from an oscillation	(1)	
	(Hence) there is a decrease in the amplitude	(1)	2
(b)(ii)	As the gel changes size/shape it absorbs energy	(1)	
	The gel does not return to its original size/shape	(1)	
	So the energy is not returned (to the drum) Or the energy is dissipated (in the gel)	(1)	
	[dependent upon mp1 or mp2]		3
	Total for Question		8

Question Number	Answer		Mark
(a)	Use of $F = k\Delta x$ (ignore reference to any minus signs) $k = 1560 \text{ (N m}^{-1}\text{)}$	(1) (1)	2
	Example of calculation:		
	$k = \frac{mg}{\Delta x} = \frac{35 \text{kg} \times 9.81 \text{Nkg}^{-1}}{0.22 \text{m}} = 1560 \text{Nm}^{-1}$		
(b)(i)	Use of $F = m \omega^2 x$ and $F = (-)k\Delta x$	(1)	
	Use of $\omega = 2\pi f$	(1) (1)	3
	f = 1.1 Hz	(.)	
	[apply ecf for responses that use a value of k that would round to the 'show that' value]		
	[Candidates who quote $T = 2\pi \sqrt{\frac{m}{k}}$, then use $f = \frac{1}{T}$ and get the correct		
	answer score full marks. If their answer incorrect, could score mp2 only]		
	Example of calculation:		
	$m\omega^2 x = k \Delta x$		
	$\therefore \omega = \sqrt{\frac{k}{m}} = \sqrt{\frac{1560 \mathrm{N m^{-1}}}{35 \mathrm{kg}}} = 6.68 \mathrm{s^{-1}}$		
	$f = \frac{\omega}{2\pi} = \frac{6.68 \mathrm{s}^{-1}}{2\pi} = 1.06 \mathrm{Hz}$		
(b)(ii)	Use of $v_{\text{max}} = \omega A$	(1)	
	Or Use of $v_{\text{max}} = 2\pi f A$		
	$v_{\text{max}} = 1.4 \text{ m s}^{-1} \text{ ecf their value of } \omega \text{ or } f$	(1)	
	[if A = 0.22 then max 1 for calculation]		
	Max velocity is at the equilibrium position	(1)	3
	[accept centre/mid-point of oscillation]	(-)	
	Example of calculation:		
	$v_{\text{max}} = \omega A = 6.68 \text{s}^{-1} \times 0.21 \text{m} = 1.40 \text{m} \text{s}^{-1}$		
(c)(i)	Resonance [accept resonating/resonates]	(1)	
	(By using her knees) she is forcing herself into oscillation at a frequency close or equal to the natural frequency of the system	(1)	
	So the transfer of energy becomes very efficient O r there is maximum/large energy transfer	(1)	3

	Total for question		14
	Weight/g is always directed downwards (so not shm)	(1)	3
	When she loses contact with the trampoline the acceleration is g	(1)	
	When she loses contact with the trampoline the (only) force is the weight Or		
	For shm there must be a force/acceleration that is always directed towards the equilibrium position	(1)	
	Alternative scheme for those who consider the direction of the force/acceleration rather than its magnitude		
	Weight/g is constant (so not shm)	(1)	
	Or When she loses contact with the trampoline the acceleration is g		
	When she loses contact with the trampoline the (only) force is the weight	(1)	
	For shm there must be a (resultant) force/ acceleration proportional to displacement from the equilibrium position [Accept undisplaced point/fixed point/central point for equilibrium position]	(1)	
*(c)(ii)	QWC – Work must be clear and organised in a logical manner using technical wording where appropriate		

Q5.

Question Number	Answer	Amplification	Mark
	С	The only correct answer is C A is not correct because it will deform very little B is not correct because the deformation will not be permanent D is not correct because it will deform very little	1

Q6.

Question	Answer	Mark
Number		
	B forced oscillation	1
	Incorrect Answers:	
	A - the table is being forced to oscillate by the phone	
	C - resonance only happens at a particular frequency, the natural frequency of	
	the table. Any oscillation of the table makes the sound louder.	
	D - it is the sound waves set up in the air that makes the sound louder and	
	these are not standing waves	

Q7.

	Answer	Mark
(a)	Idea that bridge is being forced/driven into oscillation (1)	
	At its natural frequency (accept "close to" for "at") (1)	
	Resulting in a maximum transfer of energy to the bridge	
	Or Appropriate reference to resonance (1)	3
(b)	See $\lambda = 2l$ (1)	
	Use of $v = f \lambda$ (1) $v = 100 \text{ m s}^{-1}$ (1)	3
	$v = 100 \text{ m s}^{-1}$ (1)	3
	Example of calculation	
	$\lambda = 2l = 2 \times 91 = 182 \text{ m}$	
	$v = f\lambda = 0.55 \text{Hz} \times 182 \text{m} = 100.1 \text{m} \text{s}^{-1}$	
	Total for Question	6

Q8.

Question	Answer	Mark
Number		
	The only correct answer is B	
	A is not correct because maximum velocity increases as Aincreases	
	C is not correct because maximum velocity increases as Aincreases	
	D is not correct because maximum velocity increases as A increases	(1)

Q9.

Question Number	Answer	Mark
	The only correct answer is B	1
	$m{A}$ is not correct because elastic deformations return energy to the oscillation	
	C is not correct because stiff materials require large stresses to deform	
	D is not correct because strong materials withstand large stresses without breaking	

Q10.

Question Number	Answer	Mark
	The only correct answer is B	
	A is incorrect, as elastic deformation returns energy to the building C is incorrect, as stiffness is unrelated to energy dissipation. D is incorrect, as strength is unrelated to energy dissipation.	(1)