Astrophysics - Mark Scheme

Q1.

Question Number	Answer	Mark
	A	1

Q2.

Question Number	Answer		Mark
(a)(i)	Use of $F = \frac{L}{4\pi d^2}$	1)	
		1)	
	Example of calculation		
	$L = 4\pi d^2 F = 4\pi (1.50 \times 10^{11} \mathrm{m})^2 \times 1.36 \times 10^3 \mathrm{Wm}^{-2} = 3.845 \times 10^{26} \mathrm{W}$		2
(a)(ii)		1)	
	$r = 1.5 \times 10^{10} \mathrm{m}$	1)	
	Allow full ecf from (i)	_	
	[show that value gives 1.48 x 10 ¹⁰ m]		
	Example of calculation		
	$r = \sqrt{\frac{L}{4\pi\sigma T^4}} = \sqrt{\frac{100 \times 3.85 \times 10^{26} \text{ W}}{4\pi \times 5.67 \times 10^{-8} \text{ Wm}^{-2} \text{K}^{-4} \times (4000 \text{ K})^4}}$ $r = 1.45 \times 10^{10} \text{ m}$		
	$r = 1.45 \times 10^{10} \mathrm{m}$		2

(b)(i)			
(0)(1)	(Observed wavelength is less, so) source is approaching Earth	(1)	
	Use of $\frac{v}{c} = \frac{\Delta \lambda}{\lambda}$	(1)	
	$v = 7.82 \times 10^5 \text{ m s}^{-1} [\text{accept } v = 2.606 \times 10^{-3} \text{ c}]$	(1)	
	[incorrect value of λ in denominator gives $v = 7.84 \times 10^5 \text{ ms}^{-1}$]		
	[If $v = 7.8 \times 10^5$ m s ⁻¹ or $v = 2.6 \times 10^{-3} c$, check denominator; unless		
	656.29 substituted then max 2]		
	Or		
	(Observed wavelength is less, so) source is approaching Earth	(1)	
	Use of $z = \frac{\Delta \lambda}{\lambda}$	(1)	
	$z = 2.606 \times 10^{-3}$	(1)	
	[incorrect value of λ in denominator gives $z = 2.612 \times 10^{-3}$]		
	[If $z = 2.6 \times 10^{-3}$ check denominator; unless 656.29 substituted then max 2]		
	Example of calculation		
	$\Delta \lambda = (654.58 - 656.29) \text{ nm} = -1.71 \text{ nm}$		
	$v = \frac{c \Delta \lambda}{\lambda} = \frac{3.0 \times 10^8 \text{ m s}^{-1} \times 1.71 \text{ nm}}{656.29 \text{ nm}} = 7.82 \times 10^5 \text{ m s}^{-1}$		
	λ 030.27 IIII		3

(b)(ii)	$\lambda_{B} < \lambda_{Y}$	(1)	
	$\lambda_{\max} \propto \frac{1}{T}$ therefore $T_{B} > T_{Y}$ (and statement is incorrect)	(1)	
	Or		
	$\lambda_{\max}T$ = a constant , so the cooler the star the larger the value of λ_{\max}	(1)	
	Wavelength of yellow light is greater than the wavelength of blue light, so statement is incorrect	(1)	
	statement is incorrect		2
	Total for Question		9

Q3.

Question Number	Answer	Mark
	A is correct the correct answer because red giant stars are cooler (Wien's law) and brighter (Stefan's law).	1

Q4.

Question Number	Answer	Mark
	A	1

Q5.

Question	Answer	Mark
Number		
	The only correct answer is B	1
	$m{A}$ is not correct because standard candles enable distances to be determined	
	C is not correct because radiation flux depends upon distance and luminosity	
	$m{D}$ is not correct because the surface temperature is not characteristic of a standard candle	

Q6.

Question	Answer	Mark
Number		
	The only correct answer is C	1
	A is not correct because $t=1/H_0$, and H_0 has increased by 20%	
	B is not correct because $t=1/H_0$, and H_0 has increased by 20%	
	\emph{D} is not correct because $t=1/H_0$, and H_0 has increased by 20%	

Q7.

Question Number	Answer	Mark
	C is correct because P and T increase when the current through the filament increases, so λ_{max} decreases (Wien's law).	1

Q8.

Question Number	Answer	Mark
	D	1

Q9.

Question Number	Answer	Mark
	A	1

Q10.

Question Number	Answer	Mark
	The star is viewed from two positions at 6 month intervals	
	Or The star is viewed from opposite ends of the Earth's orbit diameter about	
	the Sun (1)	
	The change in angular position of the star against backdrop of fixed stars is	
	1	
	measured (1)	
	Tricker and the selection of the distance (to the stee) [De not accept	
	Trigonometry is used to calculate the distance (to the star) [Do not accept	
	Pythagoras]	
	Or The diameter/radius of the Earth's orbit about the Sun must be known	
	Or The distance to the Sun is 1AU (1)	3
	Full marks may be obtained from a suitably annotated diagram e.g	
	nearby star	
	θ ₃	
	E ₂	
	to fixed/	
	distant	
	R=1A.U. stars	
	 - "	
	θ,	
	1	
	E, Trigonometry is	
	used to calculate d	
	[A	
	[Accept the symmetrical diagram seen in many text books]	
	Total for question	3
	A VIII A VI MICOLOID	

Q11.

Question Number	Answer	Mark
	The only correct answer is C	
	$m{A}$ is incorrect, as radiation flux decreases with distance from the source and $m{Q}$ is further away than $m{P}$.	(1)
	$\emph{\textbf{B}}$ is incorrect as radiation flux decreases with distance from the source and $\emph{\textbf{Q}}$ is further away than $\emph{\textbf{P}}$	(1)
	$m{D}$ is incorrect as, the parallax angle for P is greater than that for Q and so P is closer than Q	

Q12.

	Answer		Mark
(a)(i)	Standard candle has a known luminosity	(1)	
	(Radiation) flux/brightness of standard candle is measured at the Earth	(1)	
	Inverse square law used to calculate distance		
	Or reference to $F = \frac{L}{4\pi d^2}$ with L and F identified as luminosity		3
	and radiation flux	(1)	3
(a)(ii)	Idea that (radiation) flux/brightness/intensity is too small to measure (for more distant galaxies)	(1)	1
	(accept idea of not enough light arriving)		
*(b)	(QWC Spelling of technical terms must be correct and the answer must be organised in a logical sequence.)		
	Doppler shift formula used to calculate velocities		
	(accept $\frac{\Delta \lambda}{\lambda} = \frac{v}{c}$ Or $\frac{\Delta f}{f} = \frac{v}{c}$ Or $z = \frac{v}{c}$ for "Doppler shift formula")	(1)	
	Nebulae/galaxies were moving away from the Earth	(1)	
	The further away the galaxy the faster it was moving (from the Earth)		
	Or correct reference to the Hubble equation, $v = H_0 d$ with symbols defined	(1)	
	Therefore <u>all</u> galaxies are moving away from each other (so universe must be expanding)	(1)	4
	Total for Question		8

Q13.

	Answer		Mark
(a)(i)	Peak wavelength is in the middle of the visible region of the electromagnetic spectrum	(1)	1
(a)(ii)	Curve A because λ_{max} is smaller		
	Or curve A because peak is shifted left	(1)	1
(a)(iii)	(The curve peaks at a smaller wavelength so) the star emits more blue/UV radiation	(1)	
	The area under the curve is larger so the star has a greater power output (per unit surface area of the star) Or the peak of the curve is higher so the star has a greater power output (per unit surface area of the star)	(1)	2
	(credit can be given for candidates who incorrectly identify curve C.)		
(b)	We need to know/determine		
	the star's luminosity (L)	(1)	
	and it's (surface) temperature (T)	(1)	
	r is calculated using Stefan's Law [accept reference to $L = 4\pi r^2 \sigma T^4$ if L and T defined] Or		
	L and T plotted on Hertzspring-Russell diagram and star type identified	(1)	3

	Answer	Mark
(c)	The star is viewed from two positions at 6 month intervals Or the star is viewed from opposite ends of the diameter of the Earth's orbit about the Sun (1)	
	The change in angular position of the star against backdrop of distant/fixed stars is measured (1)	
	Trigonometry is used to calculate the distance to the star [Do not accept Pythagoras] (1)	
	The diameter/radius of the Earth's orbit about the Sun must be known (1)	4
	Full marks may be obtained from a suitably annotated diagram	
	θ_{2} $R = 1 \text{A.U.}$ θ_{1} E_{1} $Trigonometry is used to calculate d$	
	[Accept the symmetrical diagram seen in many text books] Total for Question	11

Question Number	Answer		Mark
(a)	Age of the universe = $1/H_0$	(1)	
	[Accept age of universe is inversely proportional to H ₀]		
	Since the measured value of the Hubble constant is smaller, our estimate of the age of the universe is now larger	(1)	2
(b)(i)	Dark matter cannot be detected via the em-interaction	(1)	
	[accept light but do not accept radiation on its own]	(1)	
	[accept right out do not accept fadiation on its own]		
	[accept cannot be seen]		
	But it has mass		
	Or But it exerts a gravitational force	(1)	2
(b)(ii)	(The increased proportion of dark matter may mean that)	(-)	_
		(1)	
	the gravitational force which reduces expansion may be larger Or	(1)	
	the density of the universe may be greater than the critical density		
	(Hence) the universe is more likely to reach a maximum size (before contracting)	(1)	
	Or		
	(Hence) the universe is more likely to be closed		
	[Ignore references to 'Big Crunch']		2
	Total for Question		6

Question Number	Answer		Mark
(a)(i)	(Extremely dense) to maintain a sufficiently high collision rate	(1)	
	(At a very high temperature) to give the nuclei/protons enough energy to overcome the (electrostatic) repulsion		
	Or		
	(At a very high temperature) to bring the nuclei/protons close enough to		
	experience the strong (nuclear) force	(1)	2
(a)(ii)	Gravitational potential energy decreases (as cloud collapses)	(1)	
	Decrease in (gravitational) potential energy equals increase in internal energy	gy (1)	2
(a)(iii)	Mass is converted to energy	(1)	
	according to $\Delta E = c^2 \Delta m$, where Δm is the mass deficit/lost	(1)	
	Although energy released per fusion is small, fusion rate is very large	(1)	3
(b)(i)	Reverse scale	(1)	
	Logarithmic with realistic values [max T = 50,000 K, min T = 2500 K]	(1)	2
	e.g. 20 000 10 000 2500		
(b)(ii)	A white dwarf	(1)	
	В		
	С		
	D main sequence [accept blue giant]	(1)	2
Edexcel (IAL) F	Physics A-level 8 PhysicsAnd	dMathsTuto	r.com

*(c)(ii)	(QWC – Work must be clear and organised in a logical manner using technical wording where appropriate)	
	If Polaris were closer,	
	Its ("known") luminosity would be less than had been thought (1)	
	Idea that distances to other astronomical bodies would be less than had been thought (1)	
	So the Hubble constant would be greater than had been thought Or appropriate reference to $v = H_0 d$ (1)	
	As age = $1/H_0$, the universe would not be as old as had been thought. (1)	4
	Total for Question	18

Q16.

Question Number	Answer	Mark
	The only correct answer is C	1
	$m{A}$ is not correct because the temperature should decrease from X to Y	
	${\it B}$ is not correct because the temperature should decrease from ${\it X}$ to ${\it Y}$	
	$m{D}$ is not correct because the temperature should decrease logarithmically from X to Y	

Q17.

Question Number	Answer				Mark
	A	Mass larger	Temperature higher		1
	B – the temp is a higher te C – stars at th	erature scale is a reve imperature than the St he top end of the man he top end of the man	f the main sequence is at the erse scale so the left hand er un which is near the middle n sequence have larger mas n sequence have larger mas	nd of the main sequence ses than the Sun	

Q18.

Question Number	Answer		Mark
(a)(i)	$L/A = 70 \text{ (MW m}^{-2}) \text{ [read from graph, allow 65} \rightarrow 70]$	(1)	
	Use of $A = 4\pi r^2$	(1)	
	$L = 4.3 \times 10^{26} \text{ (W)} [3.96 \times 10^{26} \rightarrow 4.30 \times 10^{26}]$	(1)	3
	[Use of the Stefan Boltzmann equation could score	(-)	
	MP2 and MP3 only]		
	F 1 6 1 1 6		
	Example of calculation $L = 70 \times 10^6 \text{ W m}^{-2} \times 4\pi \times (6.96 \times 10^8 \text{ m})^2 = 4.26 \times 10^{26} \text{ W}$		
(a)(ii)	Use of $F = \frac{L}{4\pi d^2}$	(1)	
	$F = 1.5 \times 10^3 \text{ W m}^{-2}$	(1)	2
	(allow full ecf from (i))		
	[using the 'show that' value gives $F = 1.4 \times 10^3 \text{ W m}^{-2}$]		
	Example of calculation		
	$F = \frac{4.26 \times 10^{26} \mathrm{W}}{4\pi \left(1.50 \times 10^{11} \mathrm{m}\right)^2} = 1506 \mathrm{W} \mathrm{m}^{-2}$		
(a)(iii)	Only half/part of the Earth is illuminated by the Sun at any one time	(1)	
	The idea that the calculated value of F is for radiation meeting the atmosphere at 90°, which is only true one place (the value is less at all other positions).	(1)	2

Question		Mark
Number	Answer	
(b)(i)	Use of $\lambda_{\text{max}} T = 2.898 \times 10^{-3}$ (1) $\lambda_{\text{max}} = 4.9 \times 10^{-7} \text{ (m)}$	
	$\lambda_{\text{max}} = 4.9 \times 10^{-7} \text{(m)}$ (1)	2
	Example of calculation:	
	$\lambda_{\text{max}} = \frac{2.898 \times 10^{-3} \text{ mK}}{5900 \text{ K}} = 4.91 \times 10^{-7} \text{ m}$	
b(ii)	5×10^{-7} m is approximately the middle of the (visible) wavelength range (1)	
	(So) all the (visible) wavelengths are included, producing white light [accept colours/frequencies for 'wavelengths']	2
	Total for question	11

Q19.

Question	Answer	Mark
Number		
	The only correct answer is A	
	B is not correct because $F \propto L/d^2$	
	C is not correct because $F \propto L/d^2$	
	$m{D}$ is not correct because $F \propto L/d^2$	(1)

Q20.

Question	Answer		Mark
Number			
a	Use of $\lambda_{\text{max}}T = 2.898 \times 10^{-3} \text{ m K}$	(1)	
	$\lambda_{\text{max}} = 9.4 \times 10^{-6} \text{ m}$	(1)	2
	Example of calculation		
	$\lambda_{\text{max}} = \frac{2.898 \times 10^{-3} \text{m K}}{307 \text{K}} = 9.44 \times 10^{-6} \text{m}$		
b	Use of $P = \sigma A T^4$	(1)	
	P = 600 W	(1)	2
	F - 000 W	(-)	-
	E 1 C 1 1 d		
	Example of calculation		
	$P = \sigma A T_{\text{body}}^4$		
	$P = 5.67 \times 10^{-8} \mathrm{W m^{-2} K^{-4}} \times 1.2 \mathrm{m^2 (307 K)^4}$		
	$\therefore P = 604W$		
С	(The infra-red image shows that) the man's skin temperature varies		
	over his body (and so the temperature is an estimate)		
	Or some parts of the body radiate at a higher rate than others	(1)	
	The man absorbs thermal energy from the surroundings		
	Or some emitted radiation would be reabsorbed		
	Or the surface area of man has been estimated		
	Or the surface area of man has been estimated	(1)	2
	Total for Question		6

Q21.

Question Number	Answer	Mark
	D	1

Q22.

Question	Answer	Mark
Number		
	The only correct answer is D	1
	A is not correct because there may be sufficient radiation flux	
	B is not correct because the luminosity may be sufficient	
	C is not correct because the angle decreases as the distance increases	

Question	Answer		Mark
Number			
(a)	Flux varies with distance according to inverse square law	(1)	
	[For inverse square law accept $F = \frac{L}{4\pi d^2}$ or $F \propto \frac{1}{d^2}$]		
	Flux of each star decreases by a factor of 4 as distance is doubled, but number of stars increases by a factor of 4.	(1)	
	Or		
	Attempt to use $F = \frac{L}{4\pi d^2}$ with either $d = 2r$ or $L = 4L$	(1)	
	Correct algebra to show F stays constant. (Dependent mark)	(1)	2
(b)(i)	Use of $L = \sigma A T^4$ where $A = 1 \text{ m}^2$	(1)	
(-)(-)	$L/A = 3.0 \times 10^{-6} \text{ (W m}^{-2})$	(1)	2
	2/A = 3.0 × 10 (W III)		
	Example of calculation:		
	$L/A = \sigma T^4 = 5.67 \times 10^{-8} \text{ W m}^{-2} \text{ K}^{-4} \times (2.7 \text{ K})^4 = 3.01 \times 10^{-6} \text{ W m}^{-2}$		
(b)(ii)	Use of $\lambda_{\text{max}} T = 2.898 \times 10^{-3}$	(1)	
(-)(-)		(-)	
	$\lambda_{\text{max}} = 1.1 \times 10^{-3} \text{m}$	(1)	
	Curve with peak at candidates value for λ_{max} labelled or in the correct position	(1)	
	Shape must be an asymmetric curve and must not have intensity at λ=0	(1)	4
	Wavelength / mm		
	Example of calculation: $\lambda_{\text{max}} = \frac{2.898 \times 10^{-3} \text{m K}}{2.7 \text{K}} = 1.07 \times 10^{-3} \text{m}$ Examples of graphs that do not meet the "above" exitorion:		
	Examples of graphs that do not meet the "shape" criterion:		

Q24.

Question Number	Answer	Mark
	C	1