Impulse and Momentum - Mark Scheme Q1. | Question
number | Answer | | Mark | |--------------------|---|--------------------------|------| | (a) | Use of E_{el} = ½FΔx W = 0.12 (J) | (1)
(1) | | | | Example of calculation
$W = 0.5 \times 14 \text{ N} \times 0.017 \text{ m}$
W = 0.119 J | | | | (b) | Use of E_{grav} = mgh Use of elastic potential energy = ½ mv² Or Use of grav potential energy = ½ mv² v_{head} = 6.1 (m s⁻¹) Or v_{toy} = 5.4 (m s⁻¹) (ecf from (a)) Use of p = mv P_{head} = 0.039 (kg m s⁻¹) and p_{toy} = 0.039 (kg m s⁻¹) and conclusion that momentum is conserved Or | (1)
(1)
(1)
(1) | (2) | | | $P_{\rm head} = 0.039 \; ({\rm kg \; m \; s^{-1}}) \; {\rm and} \; p_{\rm toy} = (0.039 \; {\rm kg \; m \; s^{-1}}) \; {\rm and} \; conclusion \; {\rm that} \; {\rm momentum} \; {\rm before} = {\rm momentum} \; {\rm after}$ $\frac{{\rm Example \; of \; calculation}}{{\rm For \; head, \; max \; ke} = E_{el} \; {\rm of \; spring}} \; \frac{1}{2} \times 0.0064 \; {\rm kg} \times v^2 = 0.119 \; {\rm J} \; {\rm max \; speed \; of \; head} = 6.10 \; {\rm m \; s^{-1}} \; {\rm max \; momentum \; of \; head} = 0.0064 \; {\rm kg} \times 6.1 \; {\rm m \; s^{-1}} \; {\rm max \; momentum \; of \; head} = 0.0064 \; {\rm kg} \times 6.1 \; {\rm m \; s^{-1}} \; {\rm p_{head}} = 0.039 \; {\rm kg \; m \; s^{-1}} \; {\rm E_{grav}} = 0.0072 \; {\rm kg} \times 9.81 \; {\rm N \; kg^{-1}} \times 1.5 \; {\rm m} = 0.106 \; {\rm J} \; {\rm For \; whole \; toy, \; initial \; ke} = 0.106 \; {\rm J} \; {\rm For \; whole \; toy, \; initial \; v = 5.42 \; {\rm m \; s^{-1}} \; {\rm For \; whole \; toy, \; initial \; momentum} = 0.0072 \; {\rm kg} \times 5.42 \; {\rm m \; s^{-1}} \; {\rm For \; whole \; toy, \; initial \; momentum} = 0.0072 \; {\rm kg} \times 5.42 \; {\rm m \; s^{-1}} \; {\rm For \; whole \; toy, \; initial \; momentum} = 0.0072 \; {\rm kg} \times 5.42 \; {\rm m \; s^{-1}} \; {\rm For \; whole \; toy, \; initial \; momentum} = 0.0072 \; {\rm kg} \times 5.42 \; {\rm m \; s^{-1}} \; {\rm For \; whole \; toy, \; initial \; momentum} = 0.0072 \; {\rm kg} \times 5.42 \; {\rm m \; s^{-1}} \; {\rm For \; whole \; toy, \; initial \; momentum} = 0.0072 \; {\rm kg} \times 5.42 \; {\rm m \; s^{-1}} \; {\rm For \; whole \; toy, \; initial \; momentum} = 0.0072 \; {\rm kg} \times 5.42 \; {\rm m \; s^{-1}} \; {\rm For \; whole \; toy, \; initial \; momentum} = 0.0072 \; {\rm kg} \times 5.42 \; {\rm m \; s^{-1}} \; {\rm For \; whole \; toy, \; initial \; momentum} = 0.0072 \; {\rm kg} \times 5.42 \; {\rm m \; s^{-1}} \; {\rm For \; whole \; toy, \; initial \; momentum} = 0.0072 \; {\rm kg} \times 5.42 \; {\rm m \; s^{-1}} \; {\rm For \; whole \; toy, \; initial \; momentum} = 0.0072 \; {\rm kg} \times 5.42 \; {\rm m \; s^{-1}} \; {\rm For \; whole \; toy, \; initial \; momentum} = 0.0072 \; {\rm kg} \times 5.42 \; {\rm m \; s^{-1}} \; {\rm For \; whole \; toy, \; initial \; momentum} = 0.0072 \; {\rm kg} \times 5.42 \; {\rm m \; s^{-1}} \; {\rm For \; whole \; toy, \; initial \; momentum} = 0.0072 \; {\rm kg} \times 5.42 \; {\rm m \; s^{-1}} \; {\rm For \; whole \; toy, \; initia$ | (1) | | | | $= 0.039 \text{ kg m s}^{-1}$ | | (5) | | (c) | Calculate E_K values or identify from part (a) and (b) (0.12 J before and 0.11 J after) (ecf) Conclude (kinetic energy is) not conserved because energy before is greater than energy after (accept a conclusion consistent with their answers) | (1)
(1) | | | | Example of calculation
Head ke = $\frac{1}{2} \times 0.0064 \text{ kg} \times (6.1 \text{ m s}^{-1})^2 = 0.119 \text{ J}$
Whole toy ke = $\frac{1}{2} \times 0.0072 \text{ kg} \times (5.42 \text{ m s}^{-1})^2 = 0.106 \text{ J}$ | | (2) | Q2. | Question
number | Answer | Mark | |--------------------|--------|------| | | В | (1) |