Impulse and Momentum 2 - Questions by Topic

Q1.

A particle Z has kinetic energy E and momentum p. A second particle X has twice the mass and half the momentum of particle Z.

The kinetic energy of X is

- \square B $\frac{E}{4}$
- \square C $\frac{E}{8}$
- \square D $\frac{E}{16}$

(Total for question = 1 mark)

Q2.

A student read the following extract from a textbook.

'In an elastic collision between objects of equal mass, where one is initially stationary, the objects move off at 90° to each other after the collision.'

The student investigated this using a collision between two identical steel balls, each of mass 66 g.

(a) The diagrams illustrate the collision between the balls.

Before collision

After collision

In one experiment u_1 was 0.72 m s⁻¹ and θ was 29°. For such a collision it can be shown that, if the balls are to separate at 90°, then

$$v^1 = 0.63 \text{ m s}^{-1}$$

 $\varphi = 61^{\circ}$
 $v_2 = 0.35 \text{ m s}^{-1}$

(i) Show that these values satisfy the conditions for conservation of momentum in the initial direction of ball 1.

	(4)
(ii) Show that these values satisfy the condition for elastic collisions.	
	(3)

(b) The photograph shows the student's actual results for this experiment. The positions of the colliding balls at successive time intervals have been overlaid on a single image.
ball 2
(i) State the additional information that the student needs in order to determine the speeds of the balls.
(2)

(ii) The student looked at the photograph and noticed that the angle between the paths of the two balls after the collision was not 90° . He modelled the collision on a computer. He used the same initial conditions for ball 1 and the same value of θ . The computer calculated the total kinetic energy after the collision for a range of angles φ . The following graph was produced.

Measure φ from the photograph and use the graph to suggest why the angle between the paths is not 90°.

(3)

(Total for question = 12 marks)

Q3.

An electron has a momentum of 1.9 \times 10⁻²⁴kg m s⁻¹. The kinetic energy of the electron is

- \triangle **A** 1.1 × 10⁻²¹ J
- **B** 2.0×10^{-18} J
- \square **C** 4.0 × 10⁻¹⁸ J
- \square **D** 1.0 × 10⁶ J

(Total for question = 1 mark)

Q4.	
(a) State the principle of conservation of momentum.	
	(2)
(b) State the relationship between the resultant force acting on an object and the momen the object.	tum of
	(1)
	(-)
(c) A car is travelling due east with a velocity of 12 m s ^{-1} . The driver of the car changes direction to travel due north with a velocity of 15 m s ^{-1} .	
(i) The initial velocity is shown in the diagram. Complete the vector diagram to represent the change in velocity. You do not need to draw exactly to scale.	/ it
	(2)
	(-)
12 m s ⁻¹	
(ii) Determine the change in velocity of the car.	
(ii) Determine the change in velocity of the tall	/=>
	(3)

••••			
		Magnitude of change of velocity =	
		Direction of change of velocity =	
(iii)) Th	e mass of the car is 1500 kg and the change in velocity took 4.0 s.	
Cal	lcula	ate the average force that was needed.	
			2)
		Force =	
		(Total for question = 10 mark	(s)
		(Total for question = 10 mark	(s)
		(Total for question = 10 mark	(s)
		(Total for question = 10 mark	(S)
05		(Total for question = 10 mark	(s)
Q5			(S)
Αt	oy c	(Total for question = 10 mark ar rolls down a slope. A graph is plotted of momentum against time. Which of the ng is represented by the gradient of the graph?	cs)
Αt	oy c	ar rolls down a slope. A graph is plotted of momentum against time. Which of the ng is represented by the gradient of the graph?	(s)
Αt	oy c	ar rolls down a slope. A graph is plotted of momentum against time. Which of the ng is represented by the gradient of the graph?	
Αt	oy c lowir	ar rolls down a slope. A graph is plotted of momentum against time. Which of the ng is represented by the gradient of the graph?	
Αt	oy c lowir	ar rolls down a slope. A graph is plotted of momentum against time. Which of the ng is represented by the gradient of the graph? acceleration	
Αt	oy c lowir A B	ar rolls down a slope. A graph is plotted of momentum against time. Which of the ng is represented by the gradient of the graph? acceleration kinetic energy	

Edexcel (IAL) Physics A-level

(Total for question = 1 mark)

Q6.

The wavelength	associated	with a mov	ving particle	e, known	as the d	e Broglie	wavelength
depends on the	momentum	of the par	ticle.				

(a)	Show that momentum and ki	inetic energy are related by the equation $E_k = p^2/2m$	
			(2)
(b)	Hence determine the de Brog	glie wavelength for a proton with kinetic energy 18.8 keV.	
			(4)
		de Broglie wavelength =	

(Total for question = 6 marks)