Impulse and Momentum 2 - Mark Scheme

Q1.

Question Number	Answer	Mark
	C	1

Q2.

Question Number	Answer		Mark
(a)(i)	Use of $p = mv$ (mass may be left as m or justify ignoring mass, e.g. by cancelling)	(1)	
	See either × cos 29° or × cos 61°	(1)	
	A correct value of momentum for at least one ball, or total, after collision (see 0.036 N s Or 0.55 (m) Or 0.011 (N s) Or 0.17 (m) Or 0.048 (N s) Or 0.72(m))	(1)	
	Calculated momentum before = calculated momentum after and states that momentum is conserved Or		
	Calculated momentum before = calculated momentum after and states that momentum before = momentum after	(1)	4
	Example of calculation $p_1 = 0.066 \text{ kg} \times 0.72 \text{ m s}^{-1} = 0.0475 \text{ N s} = 0.048 \text{ N s} (2 \text{ sf})$ Components in direction of $u_1 = (0.066 \text{ kg} \times 0.63 \text{ m s}^{-1} \times \cos 29^\circ) + (0.066 \text{ kg} \times 0.35 \text{ m s}^{-1} \times \cos 61^\circ)$ = 0.0364 N s + 0.0112 N s = 0.0476 N s = 0.048 N s (2 sf) Momentum before = momentum after, so satisfies principle of conservation of momentum		

(a)(ii)	Use of $E_k = \frac{1}{2} mv^2$ Or $E_k \propto v^2$	(1)	
	Initial $E_k = 0.017$ (J) ($v^2 = 0.52$ (m ² s ⁻²))	(1)	
	Calculation of final $E_k = 0.017$ (J) and statement that E_k conserved (final $v^2 = 0.52$ (m ² s ⁻²))	(1)	3
	Example of calculation $E_k = \frac{1}{2} mv^2$	(-)	
	Before:		
	Ball 1, $E_k = \frac{1}{2} \times 0.066 \text{ kg} \times (0.72 \text{ m s}^{-1})^2 = 0.0171 \text{ J}$		
	After:		
	Ball 1, $E_k = \frac{1}{2} \times 0.066 \text{ kg} \times (0.63 \text{ m s}^{-1})^2 = 00131 \text{ J}$ Ball 2, $E_k = \frac{1}{2} \times 0.066 \text{ kg} \times (0.35 \text{ m s}^{-1})^2 = 0.0040 \text{ J}$		
	2.11 2, 24 72 0.000 kg (0.33 km s) 0.0010 s		
	Total = 0.0171 J, so kinetic energy conserved		

(b)(i)	The time intervals between images	(1)	
	The scale of the photograph (accept the diameter of the balls)	(1)	2
(b)(ii)	$\varphi = 45^{\circ} \text{ to } 52^{\circ}$	(1)	
	Use of graph with their angle to determine total kinetic energy after the collision	(1)	
	Statement that it is an inelastic collision		
	Or Statement that kinetic energy is not conserved (dependent on candidate attempting MP1 and MP2)	(1)	3
	Total for question		14

Q3.

	Answer	Mark
	В	1

Q4.

Question Number	Answer		Mark
(a)	Sum of momenta before (collision) = sum of momenta after (collision) Or the total momentum before (a collision) = the total momentum after (a collision)		
	Or total momentum remains constant		
	Or the momentum of a system remains constant	(1)	
	Provided no external/unbalanced/resultant force acts		
	Or in a closed/isolated system	(1)	2
(b)	Force equals rate of change of momentum		
	Or force is proportional to rate of change of momentum		
	Or $F = \Delta(mv)/\Delta t$ with terms defined		
	Or $F = \Delta p / \Delta t$ with terms defined	(1)	1
(c)(i)	Line at right angles to drawn vector, arrow upwards and labelled.	(1)	
. , , ,	Resultant vector joined and arrow in correct direction.	(1)	2
	Correct diagram		
	Wrong direction (vector addition rather than subtraction: can score 1 mark here but allow full ecf in (c)(ii)		
	charge - 15ms		

(c)(ii)	Use of Pythagoras Or trig. (1) Change in velocity = 19 m s^{-1} (1) Direction 51° from horizontal. (1) (accept $\theta = 51^{\circ}$ if θ correctly added to diagram)	3
	Example of calculation $\Delta v = \sqrt{15^2 + 12^2}$ $\Delta v = 19.2 \text{ m s}^{-1}$ Tan $\theta = 15/12$ $\theta = 51^\circ$	
(c)(iii)	Use of $p=mv$ and $F = \Delta p/t$ (1) F = 7100 N or 7200 N ecf their value from (c)(ii) (1)	2
	Example of calculation $F = \Delta p/t$ $F = 1500 \text{ kg} \times 19.2 \text{ m s}^{-1} / 4.0 \text{ s}$ 7200 N	
	Total for Question	10

Q5.

Question	Answer	Mark
Number		
	C – resultant force	1
	Incorrect Answers:	
	A – acceleration is the gradient of a velocity-time graph	
	B – kinetic energy could be determined from the area under a force-displacement	
	graph	
	D – speed is the gradient of a distance-time graph	

Q6.

Question	Answer	Mark
Number		
(a)	Evidence of $E_k = \frac{1}{2} mv^2$ and $p = mv$ (1)	
	Correct algebraic link to $E_k = p^2/2m$ (1)	2
(b)	Use of eV conversion (1)	
	Use of $E_k = p^2/2m$ (1)	
	Use of $\lambda = h/p$ (1)	
	$\lambda = 2.09 \times 10^{-13} \mathrm{m}$ (1)	4
	Example of calculation	
	$E_k = 18800 \text{ eV} \times 1.6 \times 10^{-19} \text{ C} = 3.01 \times 10^{-15} \text{ J}$	
	$3.01 \times 10^{-15} \text{ J} = p^2/2 \times 1.67 \times 10^{-27} \text{ kg}$	
	$p = 3.17 \times 10^{-21} \mathrm{N} \mathrm{s}$	
	$\lambda = 6.63 \times 10^{-34} \text{J s} \div 3.17 \times 10^{-21} \text{N s}$	
	$\lambda = 2.09 \times 10^{-13} \mathrm{m}$	
	Total for question	6