Charged Particles in Fields - Mark Scheme

Q1.

Question	Answer	Mark
Number		
	The only correct answer is D	1
	A is not correct because there are no nuclei to decay	
	B is not correct because metal wires consist of ions and free electrons	
	C is not correct because no light is being directed to filament	

Q2.

Question Number	Answer		Mark
(a)(i)	(Thermionic) emission of electrons from heated filament		
()()	Or Thermionic emission of electrons from (heated) filament	(1)	
	Electrons accelerated by field (between anode and filament)		
	Or the electrons gain kinetic energy due to work done by the field	(1)	2
(a)(ii)	Use of $qV = \frac{1}{2}mv^2$	(1)	_
	$v = 6.9 \times 10^6 \mathrm{m s^{-1}}$	(1)	2
	Example of calculation $1.60 \times 10^{-19} \text{ C} \times 135 \text{ V} = \frac{1}{2} \times 9.11 \times 10^{-31} \text{ kg} \times v^2$		
	$v = 6.89 \times 10^6 \text{ m s}^{-1}$		
(b)(i)	Equates $F = mv^2/r$ and $F = BOv$	(1)	
(~)(1)	Algebra including use of $p = mv$ for conclusion	(1)	2
	Example of derivation		
	$F = mv^2/r$ and $F = BQv$		
	$mv^2/r = BQv$		
	mv/r = BQ		
	r = mv/BQ p = mv		
	so $r = p/BQ$		
(b)(ii)	Use of $r=p/BQ$	(1)	
	$B = 1.1 \times 10^{-3}$ T (Allow ecf of v from (a)(ii))	(1)	2
	Example of calculation		
	$0.073 \text{ m} / 2 = 9.11 \times 10^{-31} \text{ kg} \times 6.89 \times 10^6 \text{ m s}^{-1} / B \times 1.60 \times 10^{-19} \text{ C}$		
(-)	$B = 1.1 \times 10^{-3} \text{ T}$		
(c)	Max 2		
	Camera allows magnification		
	or camera avoids unsteadiness of hand		
	But as the scale isn't against the object being measured there will be parallax		
	errors		
	or as camera cannot 'line up' with both sides at the same time there will be		
	parallax errors		
	difficult to align ruler with maximum distance between sides of circle		
	or thickness of path makes it difficult to measure diameter		
	resolution of metre rule is small relative to the measurement		
	Or percentage uncertainty in measured value is low		2
(d)	Electron collisions decreases E_K / speed / momentum of electrons, reducing		
	radius/diameter Or (accelerating) electrons emit (synchrotron) radiation, reducing the E_K /		
	speed / momentum of the electrons, reducing radius/diameter	(1)	
	Electrons scattered/absorbed by helium so intensity of beam decreases Or There are fewer electrons in the beam so the intensity decreases	(1)	2
	Total for question	. (1)	12

Q3.

Question	Answer		Mark
Number			
*(a)	(QWC – Work must be clear and organised in a logical manner using technical wording where appropriate)		
	P.d./E-field accelerates protons between dees	(1)	
	This is an alternating p.d./E-field Or the p.d./ E-field reverses when the proton is in the dees	(1)	
	Magnetic field perpendicular to (plane of) dees/proton motion	(1)	
	Proton path curved by magnetic field Or magnetic field exerts centripetal force	(1)	
	As momentum/velocity/speed/ $E_{kinetic}$ of protons increases radius of path in dees increases	(1)	
	The time for which a proton is in a dee remains constant Or the frequency of p.d./E-field is constant	(1)	(6)

Question	Answer		Mark
Number			
(b)(i)	$^{1}_{1}p + ^{18}_{8}O \rightarrow ^{18}_{9}O + ^{1}_{0}n$		
	Left hand side correct	(1)	
	Right hand side correct	(1)	
	Neutron produced (dependent an equation)	(1)	(3)
b(ii)	Use of $F = \frac{kQ_1 Q_2}{r^2}$	(1)	
	with e × 8e	(1)	
	F = 180 N	<i>(</i> 1)	
	Example of calculation	(1)	
	$F = \frac{8.99 \times 10^{9} \text{Nm}^{2} \text{C}^{-2} \times 1.6 \times 10^{-19} \text{C} \times 8 \times 1.6 \times 10^{-19} \text{C}}{(3.2 \times 10^{-15} \text{ m})^{2}}$		
	F = 179.8 N		(3)
	Total for question 14		12

Q4.

Question Number	Answer	Mark
	В	1

Q5.

Question	Answer	Mark
Number		
	B – into the page	1
	Incorrect Answers:	
	A – treats direction of electron travel as direction of current	
	C – not perpendicular to page	
	D – not perpendicular to page	

Q6.

Question Number	Answer	Mark
	D	1

Q7.

Question Number	Answer		Mark
(a)	Photon causes no ionisation	(1)	1
(b)	Track A by (Fleming's) left hand rule	(1)	1
* (c)	(QWC – work must be clear and organised in a logical manner using technical terminology where appropriate)		
	Charges are opposite so spiral in opposite directions	(1)	
	Both particles have same mass/charge so same curvature/radius	(1)	
	Circular motion is due to magnetic field/force being at right angles to (direction of) motion	(1)	
	They have decreasing E_k /speed/momentum	(1)	
	Uses $Bqv=mv^2/r$ or $r=mv/Bq$ to justify decreasing radius	(1)	5
	Total for question		7

Question Number	Answer	Mark
(a)	See energy = QV Or $W=QV$ Or $E=QV$ Or $F=EQ$ and $E=V/d$ (1)	
	Equate QV and $\frac{1}{2}mv^2$	
	Or equate QV and $\frac{p^2}{2m}$ (1)	2
* (b)	(QWC – Work must be clear and organised in a logical manner using technical wording where appropriate)	
	the (magnetic) field acts at a right angle to the direction of motion Or the velocity of the ion is perpendicular to the (magnetic) field (1)	
	the force is perpendicular to the direction of motion. (1)	
	the force acts as a centripetal force Or this is the condition for circular motion (1)	3
(c)	See mass of ion = $80 \times 1.66 \times 10^{-27}$ (kg) in velocity/p calculation Or 1.328×10^{-25} (kg) in velocity/p calculation (1)	
	Use of $m/Q = 2V/v^2$ with $Q = (-) 1.6x10^{-19}$ (C) (1)	
	Use of $BQv = \frac{mv^2}{r}$ Or use of $r = \frac{p}{BQ}$ and $p = mv$	
	(do not award this mark if speed of light is used) (1)	
	r = 0.47 m (1)	4
	Example of calculation $m/Q = 2V/v^2$ $v = \sqrt{(2VQ/m)}$	
	$v = \sqrt{\frac{2 \times 3000 \mathrm{V} \times 1.6 \times 10^{-19} \mathrm{C}}{80 \times 1.66 \times 10^{-27} \mathrm{kg}}}$	
	$v = 8.5 \times 10^4 \text{ (ms}^{-1})$	
	$r = \frac{mv/BQ}{r}$ $r = \frac{80 \times 1.66 \times 10^{-27} \text{kg} \times 8.5 \times 10^4 \text{m s}^{-1}}{0.15 \text{ T} \times 1.6 \times 10^{-19} \text{C}}$	
	$r = 4.7 \times 10^{-1} \mathrm{m}$	
	Total for question	9