Capacitance - Mark Scheme

Q1.

Question	Answer		Mark
Number			
(a)	Use of $C=Q/V$	(1)	
	$Q = 1.0 \times 10^{-6} \mathrm{C}$	(1)	2
	Example of calculation		
	$Q = 680 \times 10^{-9} \mathrm{F} \times 1.5 \mathrm{V}$		
	$O = 1.02 \times 10^{-6} \mathrm{C}$		
	~		
(b)	Use of $Q = Q_0 e^{-t/RC}$	(1)	
(-)	converts ms \rightarrow and nF \rightarrow F	(1)	
	$Q = 1.3 \times 10^{-9}$ C (ecf their Q from (a))	(1)	
	Negligible charge Or fully discharged Or % charge remaining quoted correctly	(1)	4
	regingible charge of fully discharged of 70 charge remaining quoted correctly	(1)	7
	Example of calculation		
	$\frac{\text{Example of calculation}}{Q = Q_0 e^{-\nu RC}}$		
	$Q = Q_0 e^{-Q_0 e^{-0.001s/(220 \Omega \times 680 \times 10^{-9} F)}}$		
	$Q = (1.0 \times 10^{\circ} \text{ C}) \text{ e}$		
	0.405.40=9.6		
	$Q = 1.25 \times 10^{-9} \mathrm{C}$		
(c)	I = fQ	(1)	
	$I = 5.1 \times 10^{-4}$ A ecf their Q from (a)	(1)	2
	Example of calculation		
	$I = fQ = 500 \text{ Hz} \times 1.02 \times 10^{-6} \text{ C}$		
	$I = 5.1 \times 10^{-4} \mathrm{A}$		
	Total for Question		8

Q2.

	Answer	Mark
	A	1

Q3.

Question Number	Answer	Mark
	D	1

Question	Answer		Mark
Number			
(a)(i)	Use of $I = I_0 / e$ (I_0 from 2.35 mA to 2.4 mA) to find time constant	(1)	
	Or intercept with t axis using initial tangent to find time constant (range 125 s		
	to 135 s)		
	Use of time constant = RC	(1)	
	C = 0.015 (F) to 0.017 (F)	(1)	
	Or	4.	
	Attempts a pair of readings of I and t from graph	(1)	
	Use of $I = I_0 e^{-t/RC}$	(1)	
	C = 0.015 (F) to 0.017 (F)	(1)	
	Or		
	Attempts to obtain 'half-life' from graph	(1)	
	Use of $t_{\frac{1}{2}} = RC \ln 2$	(1) (1)	
	C = 0.015 (F) to 0.017 (F)	(1)	3
	0 - 0.015 (1) 10 0.017 (1)	(1)	3
	Example of calculation		
	$\frac{\text{Example of calculation}}{131 \text{ s} = 8200 \ \Omega \times C}$		
	$C = 1.60 \times 10^{-2} \mathrm{F}$		
(a)(ii)	Use of $V = IR$ for initial p.d. using initial current	(1)	
(11)(11)	Use of $C = Q/V$ ecf from (i)	(1)	
	Q = 0.32 C	(1)	3
	0.320	(-)	
	Example of calculation		
	$\overline{V} = 0.0024 \text{ A} \times 8200 \Omega = 19.7 \text{ V}$		
	$\Delta Q = 1.60 \times 10^{-2} \text{ F} \times 19.7 \text{ V} = 0.316 \text{ C}$		
	20 1.00 % 10 1 % 15.7 V 0.510 C		
(a)(iii)	Use of suitable equation, e.g. $W = \frac{1}{2}QV$ ecf from (i) and (ii)	(1)	
(-)(-)	W = 3.1 J	(1)	2
	Example of calculation		
	$W = \frac{1}{2} \times 0.316 \text{ C} \times 19.7 \text{ V}$		
	W = 3.08 J		
			l .
(b)	<u></u>	(1)	
(~)	Use of $V = V_0 s \overline{R} t$	(1)	
	Correct use of 15%	(1)	
	$R = 240 \text{ k}\Omega$	(-)	3
	Encode of administra		
	Example of calculation		
	$0.15V_0 = V_0 e^{\frac{-\varepsilon}{RC}}$		
	$\ln 0.15 + \ln V_0 = \ln V_0 - \frac{t}{E^{0}}$		
	1-0.15210 s		
	$\ln 0.15 = \frac{-210 \text{ s}}{R \times 470 \times 10^{-9} F}$		
	$R = 2.36 \times 10^5 \Omega$		
	Total for question		11

Question	Answer	Mark
Number		
(a)	at least 3 horizontal straight lines touching both sides (1)	
	equispaced (by eye) (1)	
	arrow pointing to the right (1)	
		(3)
(b)	Use of $W = \frac{1}{2}CV^2$ Or $Q = CV$ and $E = QV/2$ (1)	
	$W = 1.5 \times 10^{-10} \mathrm{J} \tag{1}$	
	Example of calculation $W = \frac{1}{2} \times 12 \times 10^{-12} \text{ F} \times (5.0 \text{ V})^2$	
	$W = 1.5 \times 10^{-10} \text{ J}$	(2)
(c)	Use of $Q = CV$ (1)	
	Use of total charge before = total charge after Or Use of $Q_1/Q_2 = C_1/C_2$ (accept use of total capacitance = sum of capacitances)	
	V = 4.4 V (1)	
	Example of calculation Total charge = $12 \times 10^{-12} \text{ F} \times 5.0 \text{ V} = 6.0 \times 10^{-11} \text{ C}$ $6.0 \times 10^{-11} \text{ C} = 12 \times 10^{-12} \text{ F} \times V + 1.5 \times 10^{-12} \text{ F} \times V$	
	V = 4.4 V	(3)
	Total for question 12	8

Question Number	Answer		Mark
(a)(i)	The idea that electrons move from one plate to the other plate through the external circuit	(1)	
	When fully charged there is no movement of electrons Or As capacitor charges, rate of flow of electrons decreases Or (when fully charged) p.d. across the plates/capacitor is equal (and opposite)		
	to the supply p.d. Or (when fully charged) equal and opposite charge/electrons on each plate	(1)	2
(a)(ii)	Use of W = $\frac{1}{2}$ CV ² Or use of Q=CV and W= $\frac{1}{2}$ QV	(1)	
	W = 0.34 J	(1)	2
	Example of calculation		
	$W = 0.5 \times 4700 \times 10^{-6} \text{F} \times (12 \text{ V})^2 = 0.34 \text{ J}$		
(b)(i)	Current decreases (over time)	(1)	
	Exponentially	(1)	2
	(a graph of I/t with I decreasing can score MP1. Must be indicated as exponential for MP2)		
(b)(ii)	Use of $V = V_0 e^{-t/RC}$ Or see $ln(V/V_0) = -t/RC$	(1)	
	Use V = 1.2 (V) and $V_0 = 12(V)$ Or use $\frac{v}{v_0} = 0.1$	(1)	
	$R = 2300 \Omega$	(1)	3
	Example of calculation $V = V_0 e^{-t/RC}$ $ln\left(\frac{V}{V_0}\right) = \frac{-t}{RC}$ $ln(0.1) = \frac{-25 \text{ s}}{R \times 4700 \times 10^{-6} \text{ F}}$		
	$R = \frac{-25 \text{ s}}{ln0.1 \times 4700 \times 10^{-6} \text{ F}}$		
	$R = 2300 \Omega$		
	Total for question		9

Q7.

Question Number	Answer	Mark
	В	1

Question	Answer	Mark
Number		
	The only correct answer is B	
	A is not correct as this shows both charge and current decreasing, which would be correct for discharging but not charging. C is not correct as this shows both charge and current increasing, which is not possible in the circuit shown. D is not correct as this shows current increasing and charge decreasing, which is not possible in the circuit shown	(1)

Q9.

Question Number	Answer		Mark
(a)	Use of $T = RC$ T = 0.3 s	(1) (1)	2
	Example of calculation $T = RC = 1500 \Omega \times 200 \times 10^{-6} \text{ F}$ $T = 0.3 \text{ s}$		
(b)	B5 = $(6V - E4)/1.5$ (k Ω) Or I = $(E-V)/R$		
	Or $I = (6.0 - 3.33)/1.5$	(1)	
	Correct units or comment about mA and $k\Omega$	(1)	2
	(allow 1 mark for B5 =C5/(A5-A4) and 1 mark for use of exponential equation)		
(c)(i)	3 points plotted accurately ± ½ small square Line of best fit drawn (smooth by eye)	(1) (1)	2
(c)(ii)	Initial tangent drawn $t = 0.19 \text{ s} - 0.26 \text{ s}$	(1) (1)	
	Or 37% of initial current found $t = 0.24 \text{ s} - 0.26 \text{ s}$	(1) (1)	
	Or half life determined and use of half life = 0.693 RC $t = 0.23 \text{ s} - 0.26 \text{ s}$	(1) (1)	
	Or uses a pair of points off the graph in exponential equation $t = 0.24 \text{ s} - 0.26 \text{ s}$	(1) (1)	2
(c)(iii)	Reduce the time interval	(1)	1
*(d)	Reference to $I = I_0 e^{-t/RC}$ Or $\ln I = \ln I_0 - t/RC$		
. ,	Or states that there is exponential relationship between I and t	(1)	
	Plot $\ln I$ against t Or $\ln (I/I_0)$ against t	(1)	
	The time constant = $-1/g$ radient	(1)	3
	Total for Question		12

Question	Answer	Mark
Number		
	The only correct answer is A because	
	p.d. for each capacitor = $V/2$	
	energy for each capacitor = $\frac{1}{2} C (V/2)^2 = C V^2/8$	
	energy for pair of capacitors = $C V^2/4$	
	B is not correct because this is the energy stored for a single capacitor with $p.d. = V$	
	C is not correct because this is calculated without applying V/2	
	D is not correct because this is 8 times the correct energy	1