Circular Motion Paper Questions Jan 2002—Jan 2010 (old spec)

2	(a)	A particle that moves uniformly in a circular path is accelerating yet moving at a constant speed.
		Explain this statement by reference to the physical principles involved.
		Q2 Jun 2007
		(3 marks)
	(b)	Figure 2
		rotation mass turntable
		A $0.10 \mathrm{kg}$ mass is to be placed on a horizontal turntable that is then rotated at a fixed rate of 78 revolutions per minute. The mass may be placed on the table at any distance, r , from the axis of rotation, as shown in Figure 2 .
		If the maximum frictional force between the mass and the turntable is $0.50\mathrm{N}$, calculate the maximum value of the distance r at which the mass would stay on the turntable at this rate of rotation.

(4 marks)