Waves on Strings - Mark Scheme

Q1.

Question	Answer	Mark
Number		
	A is the correct answer	(1)
	B is not the correct answer as it can be altered to change frequency (CP 5)	
	C is not the correct answer as it can be altered to change frequency (CP 5)	
	D is not the correct answer as it can be altered to change frequency (CP 5)	

Q2.

Question Number	Answer	Mark
a	Recognises that node to node distance = $\lambda/2$	
a a	Or $\lambda = L/2$ stated (1)	
	Or $\lambda = L/Z$ stated (1)	
	Wavelength = 0.85m (1)	
	wavelength = 0.05th	
	Example of calculation	
	Node to node distance = $\lambda/2$.	
	String has 4 loops so total length of string is 2λ	
	$\lambda = 1.70 \text{ m} / 2 = 0.85 \text{ m}.$	(2)
b	Use of $v = \sqrt{(T/\mu)}$ (1)	
	Use of $T = mg$ (1)	
	$v = 21 \text{ m s}^{-1}$ (1)	
	Example of calculation	
	$T = mg = 0.20 \text{ kg} \times 9.81 \text{ N kg}^{-1} = 1.96 \text{ N}$	
	$v = \sqrt{(T/\mu)} = \sqrt{(1.96 \text{ N} / 4.5 \times 10^{-3} \text{ kg m}^{-1})} = 20.9 \text{ m s}^{-1}$	
		(3)
c	T and μ are the same	
	Or (As f decreases,) λ increases (1)	
	Speed would be the same On There is no effect (on the speed) (1)	
	Or There is no effect (on the speed)	
		(2)

Question Number	Answer		Mark
a	(Two) waves travelling in opposite directions Or Wave reflected back on itself	(1)	
	Superposition / interference occurs	(1)	(2)
bi	Units of u are ms ⁻¹ and units of d are m	(1)	
	Units of f are s ⁻¹	(1)	(2)
bii	Use of $v = \sqrt{(T/\mu)}$	(1)	
	Recognises that $\lambda = 2L/3$ Or states that $\lambda = 0.22$ m	(1)	
	Uses their <u>calculated</u> v and their λ in $v = f\lambda$ to establish f	(1)	
	Use of $f = Ku/d$ with their f to establish u	(1)	
	$u = 1.1 \text{ ms}^{-1}$	(1)	(5)
	Example of calculation $v = \sqrt{(T/\mu)} = \sqrt{(63\text{N} / 0.58 \times 10^{-3} \text{ kgm}^{-1})} = 330 \text{ ms}^{-1}$ $\lambda = 2L/3 = (2 \times 0.33 / 3) = 0.22 \text{ m}$ $f = v/\lambda = 330 \text{ ms}^{-1} / 0.22 \text{ m} = 1500 \text{ Hz}$ $u = fd/K = [1500 \text{ Hz} \times (0.15 \times 10^{-3} \text{ m})] / 0.2 = 1.125 \text{ ms}^{-1}$		
	Total for question		9