Resistance, Components and Resistivity - Mark Scheme

Q1.

Question	Answer					Mark
Number						
* a		sesses a student's a er with linkages an		show a coherent and logically stained reasoning.		
	Marks are awarded for indicative content and for how the answer is structured and shows lines of reasoning.					
	The following table shows how the marks should be awarded for					
	Number of	Number of	1			
	indicative	marks awarded				
	marking	for indicative				
		marking points				
	answer	marking points				
	6	4	-			
	5–4	3	-			
	I —	2	1			
	3–2	1	-			
	1		-			
	0	0				
			marks sh	ould be awarded for		
	structure and lin	es of reasoning.			_	
				Number of marks awarded		
				for structure of answer and		
				sustained line of reasoning		
		a coherent and log	ical	2		
		linkages and fully		_		
	sustained lines					
	demonstrated t	hroughout				
	Answer is part	ially structured wit	h	1		
		and lines of reason		•		
	Answer has no points and is t	o linkages between instructured		0		
	Indicative cont	ent			_	
	thermist	tor)		energy to electrons (in onduction/free electrons		
	1	-		esistance in thermistor		
	Decreased p.d. across thermistor / YZ Or current in circuit/thermistor increases					
	1			Or increased p.d. across XY		
	1	-		on, secondary circuit should be		(6)
	across 3	_	аррисанс	ni, secondary circuit snould be		(*)
		statements for IC				
	(Do not allow contradicting statements for IC4 e.g. lower V so lower I)					

b	Ratio of p.d.s to resistances	(1)	
	See either 775 Ω or 263 Ω for light dependent resistor	(1)	
	Difference = (-) 512 Ω	(1)	
	Or		
	Use of $R = V/I$ to calculate current	(1)	
	See either 775 Ω or 263 Ω for light dependent resistor	(1)	
	Difference = (-) 512 Ω	(1)	(3)
	Example of calculation $\frac{7.29 \text{ V}}{4.71 \text{ V}} = \frac{1200 \Omega}{R}$ so $R = 775 \Omega$		
	$\frac{9.84 \text{ V}}{2.16 \text{ V}} = \frac{1200 \Omega}{R} \text{ so } R = 263 \Omega$		
	Difference in resistance = 263 Ω - 775 Ω = (-) 512 Ω		
	Total for question		9

Q2.

Question	Answer	Mark
Number		
	C is the correct answer	(1)
	A is not the correct answer as this is the graph for a fixed resistor	
	B is not the correct answer as this is the graph for a filament lamp	
	D is not the correct answer as this graph does not match any component	

Q3.

	Question	Answer	Mark
	Number		
		Use of $A = \pi r^2$ (1)	
		Use of $R = \rho l/A$ (1)	
		Resistivity = $2.5 \times 10^{-8} (\Omega \text{ m})$ so aluminium (1)	3
		Resistivity = 2.5 ×10 (32 m) so aluminum	
		(If candidates calculate A as 1.02×10^{-7} m ² they get 2.6×10^{-8} Ω m)	
		(if candidates careatate it as 1.52 % To the they gov 2.5 % To the they	
		Example of calculation	
		$A = \pi (0.18 \times 10^{-3})^2 = 1.0 \times 10^{-7} \text{ m}^2.$	
		$A = k (0.18 \land 10^{\circ}) = 1.0 \land 10^{\circ} \text{ III}$.	
		P.47. (50 ×10 ⁻³ 0) (1.0 × 10 ⁻⁷ ····) ((0.000 ···) 2.5 × 10 ⁻⁸ 0 ···	
		$\rho = RA/l = (50 \times 10^{-3} \Omega) (1.0 \times 10^{-7} \text{ m}^2) / (0.200 \text{ m}) = 2.5 \times 10^{-8} \Omega \text{ m}$	
Į		Total for question	3

Q4.

Question Number	Answer		Mark
a	The average/mean velocity of the (free) electrons	(1)	
	(allow "speed" for "velocity", and "charge carriers" for "electrons").		1
b	Use of $I = nqvA$ with $e = (-)1.60 \times 10^{-19}$ (C)	(1)	
	$v = (-) 3.65 \times 10^{-4} \text{ m s}^{-1}$	(1)	2
	Example of calculation $v = I/nqA = \frac{1.31 \text{ A}}{(8.49 \times 10^{28} \text{ m}^{-2})(1.60 \times 10^{-19} \text{ C})(2.64 \times 10^{-7} \text{ m}^2)}$		
	$v = 3.65 \times 10^{-4} \mathrm{m \ s^{-1}}$		
	Total for question		3

Q5.

Question Number	Answer				Mark
a	<u>Diameter</u> of wire with a mi	crometer or digital ca	alliper	(1)	
	Length of wire using a met	re rule		(1)	
	Potential difference (in par series with the wire) with a		ith a voltmeter and current (in		
	Or resistance, using an ohr		ith the wire)	(1)	(3)
b	Use of πr^2 or $\pi d^2/4$			(1)	
	Suitable axes Corresponding gradient to (MP3 dependent on MP2)	give resistivity		(1)	
	(MF3 dependent on MF2)			(1)	(3)
	Some examples of appropr	iate axes			
	y-axis	x-axis	gradient		
	R	l	ρ / A		
	R	l/A	ρ		
	RA	1	ρ		
	l	R	A/ρ		
	1	RA	1/ρ		
	l/A	R	1/ρ		
	V	Il	ρ/A		
	Total for question				6

Q6.

Question	Answer	Mark
Number		
	C is the correct answer as the resistance of both listed components decreases as the applied potential difference increases.	
	A is not the correct answer as the resistance of an ohmic conductor remains constant when the applied potential difference increases.	
	B is not the correct answer as the resistance of a filament lamp increases when the applied potential difference increases.	
	D is not the correct answer as the resistance of a filament lamp increases when the applied potential difference increases.	(1)

Q7.

Question	Answer		Mark
Number			
a	See $V_T = V_1 + V_2$	(1)	
	See $IR_T = IR_1 + IR_2$	(1)	
	(Divides by I to give) $R_T = R_1 + R_2$	(1)	3
b	Use of $V = IR$ with 7.0V and 0.5A	(1)	
	Use of $\frac{1}{Rtot} = \frac{1}{R1} + \frac{1}{R2}$	(1)	
	$R = 12\Omega$	(1)	
	Or Use of $V = IR$ with 6Ω and $0.5A$ (to get 3V across 6Ω resistor) Second use of $V = IR$ with $V = 4V$	(1) (1)	
	R = 12Ω	(1)	3
	Example of calculation R for whole circuit = $(7.0\text{V}/0.5\text{A}) = 14\Omega$ So R for parallel section = $14 - 6 = 8\Omega$ $1/8 = 1/24 + 1/R2$ $R2 = 12\Omega$		

$P = 1.5 \times 10^{-2} \text{W} \tag{1}$ Or Ratio of resistances used to calculate p.d. across R (1) Use of $P = V^2/R$ $P = 1.5 \times 10^{-2} \text{W} \tag{1}$ $\frac{\text{Example of calculation}}{\text{I} = 12.0 \text{V} / (8000 + 670 \Omega) = 1.38 \times 10^{-3} \text{A}}$ $P = (1.38 \times 10^{-3} \text{A})^2 \times 8000 = 0.015 \text{W}$ cii Decrease in the number of conduction/ free electrons (1) Greater resistance of LDR (1) Less p.d. across the fixed resistor (allow "voltage" for "p.d.") Use of a suitable power equation to conclude that less power dissipated in the fixed resistor. (Converse argument not allowed for MP1 & MP2) (For MP4, do not accept an answer that includes an incorrect statement about one of the variables)	13	Total for question
Or Ratio of resistances used to calculate p.d. across R Use of $P = V^2/R$ $P = 1.5 \times 10^{-2} \mathrm{W}$ (1) Example of calculation $I = 12.0 \mathrm{V} / (8000 + 670 \Omega) = 1.38 \times 10^{-3} \mathrm{A}$ $P = (1.38 \times 10^{-3} \mathrm{A})^2 \times 8000 = 0.015 \mathrm{W}$ cii Decrease in the number of conduction/ free electrons (1) Greater resistance of LDR (1) Less p.d. across the fixed resistor (allow "voltage" for "p.d.") Use of a suitable power equation to conclude that less power dissipated in the fixed resistor.		•
Or Ratio of resistances used to calculate p.d. across R Use of $P = V^2/R$ $P = 1.5 \times 10^{-2} \text{ W}$ (1) Example of calculation $I = 12.0 \text{ V} / (8000 + 670 \Omega) = 1.38 \times 10^{-3} \text{ A}$ $P = (1.38 \times 10^{-3} \text{ A})^2 \times 8000 = 0.015 \text{ W}$ Cii Decrease in the number of conduction/ free electrons (1) Greater resistance of LDR (1) Less p.d. across the fixed resistor (allow "voltage" for "p.d.") Use of a suitable power equation to conclude that less power dissipated (1)		(Converse argument not allowed for MP1 & MP2)
Or Ratio of resistances used to calculate p.d. across R Use of $P = V^2/R$ $P = 1.5 \times 10^{-2} \text{ W}$ (1) Example of calculation $I = 12.0 \text{ V} / (8000 + 670 \Omega) = 1.38 \times 10^{-3} \text{ A}$ $P = (1.38 \times 10^{-3} \text{ A})^2 \times 8000 = 0.015 \text{ W}$ cii Decrease in the number of conduction/ free electrons (1) Greater resistance of LDR (1) Less p.d. across the fixed resistor	ver dissipated (1) 4	
Or Ratio of resistances used to calculate p.d. across R Use of $P = V^2/R$ $P = 1.5 \times 10^{-2} \text{ W}$ (1) Example of calculation $I = 12.0 \text{ V} / (8000 + 670 \Omega) = 1.38 \times 10^{-3} \text{ A}$ $P = (1.38 \times 10^{-3} \text{ A})^2 \times 8000 = 0.015 \text{ W}$ cii Decrease in the number of conduction/ free electrons (1)	(1)	_
Or Ratio of resistances used to calculate p.d. across R Use of $P = V^2/R$ $P = 1.5 \times 10^{-2} \text{ W}$ (1) Example of calculation $I = 12.0 \text{ V} / (8000 + 670 \Omega) = 1.38 \times 10^{-3} \text{ A}$ $P = (1.38 \times 10^{-3} \text{ A})^2 \times 8000 = 0.015 \text{ W}$	(1)	Greater resistance of LDR
Or Ratio of resistances used to calculate p.d. across R Use of $P = V^2/R$ $P = 1.5 \times 10^{-2} \text{ W}$ $\frac{\text{Example of calculation}}{\text{I} = 12.0 \text{ V} / (8000 + 670 \Omega)} = 1.38 \times 10^{-3} \text{ A}$	(1)	cii Decrease in the number of conduction/ free electrons
Or Ratio of resistances used to calculate p.d. across R Use of $P = V^2/R$ (1)		I = 12.0 V / (8000 + 670 Ω) = 1.38 × 10 ⁻³ A P = $(1.38 \times 10^{-3} \text{ A})^2 \times 8000 = 0.015 \text{ W}$
$P = 1.5 \times 10^{-2} \mathrm{W} \tag{1}$	(1)	Ratio of resistances used to calculate p.d. across R Use of $P = V^2/R$
ci Use of $V = IR$ to determine circuit current (1) Use of $P = I^2R$ or $P = V^2/R$ or $P = VI$ (1)		ose of 7 The to determine effective editions

Q8.

Question Number	Answer	Mark
	D is the correct answer (Drift velocity is I/nqA)	
	A is not the correct answer as drift velocity is not I/nA	
	B is not the correct answer as drift velocity is not nqA/I	
	C is not the correct answer as drift velocity is not nA/I	(1)