Intensity of Radiation - Mark Scheme

Q1.

Question	Answer		Mark
Number			
a	Use of $I = P/A$	(1)	
	Use of $A = 4\pi r^2$	(1)	
	$r = 1.47 \times 10^{11} \mathrm{m}$	(1)	3
	(MP3 can only be awarded if 1410 W m ⁻² has been used)		
	Example of calculation $4\pi r^2 = (3.83 \times 10^{26} \text{ W}) / 1410 \text{ W m}^{-2}$		
	$r = 1.47 \times 10^{11} \text{m}.$		
b	Mars orbits at a greater distance from the Sun than the Earth as the intensity is lower	(1)	
	Mars has a more elliptical orbit than the Earth	(1)	
	The (relative) difference between the maximum and minimum intensity for Mars is greater.	(1)	3
	(All 3 marking points need to be comparisons)		
	Total for question		6

Q2.

Question Number	Answer	Mark
	D is the correct answer as efficiency is the useful power output (250W) divided by the total power input (Intensity x Area).	
	A is not the correct answer as this is (Power × Area) / Intensity B is not the correct answer as this is Intensity / (Power × Area) C is not the correct answer as this is the reciprocal of the efficiency equation	(I)

Question Number	Answer		Mark
ai	Use of $I = P/A$ Maximum energy received in one hour = 3.6×10^{19} J		
	Example of calculation $P = I \times A = (1100 \text{ Wm}^{-2}) \times (9.2 \times 10^{12} \text{ m}^2) = 1.0 \times 10^{16} \text{ W}$ $E = P \times t = (1.0 \times 10^{16} \text{ W}) \times (60 \times 60) = 3.6 \times 10^{19} \text{ J}$	(2)	
aii	Calculates total energy usage in 2014		(2)
***	Or Calculates total energy received by solar panels in 1 year		
	Comparison of energies (hours with hours or years with years) to a correct conclusion.	o come (1)	
	Allow e.c.f. from values in (a)(i)		
	Possible comparisons: Total energy worldwide in 2014 Total energy received by solar 23800 TWh (in a year) 87,600,000 TWh (if using 24 ho 23800 TWh (in a year) 43,800,000 TWh (if using 12 ho 8.6 × 10 ¹⁹ J (in a year) 3.2 × 10 ²³ J (if using 24 hrs) 8.6 × 10 ¹⁹ J (in a year) 1.6 × 10 ²³ J (if using 12 hrs) 9.8 × 10 ¹⁵ J (in an hour) 3.6 × 10 ¹⁹ J (in an hour)	ours)	
	Example of calculation Total E worldwide in 1 year = $23,800 \times (3.6 \times 10^{15} \text{ J}) = 8.6 \times 10^{8.6} \times 10^{19} \text{ J} / 3.6 \times 10^{19} \text{ J} = 2.4 \text{ (hours)}, so worldwide electrical consumption for 2014 would be produced in less than 3 hours$		(2)
b	MAX 2 from:		
	Sand(storms) reduce amount/intensity/energy/power of light	(1)	
	Fewer electrons released in the (solar) panel	(1)	
	Sand(storms) absorbs/blocks/reflects some light	(1)	
	Sand(storms) reduces area of panel/desert	(1)	(2)